

Local Solutions For Individual Customers Worldwide

STAUFF Accumulators Product Catalog

Accumulators and Accessories

Stauff Bladder Accumulators STBA		Material Options	1
	3000 PSI / 201 Bar Bottom Repairable	Design Features Dimensions	3 4
	3000 PSI / 201 Bar Bottom Repairable High Flow	Dimensions	5
	3000 PSI / 201 Bar Top Repairable	Dimensions	6
	5000 PSI / 345 Bar Bottom Repairable Ordering Codes Availability Chart	Dimensions	7 8 8
Replacement Bladders STB Replacement Gas Valves - STA-AS-GV			9
	Technical Data Odering Codes		9 10
Charging Kits	3000 PSI Bottom and Top Repairable STBA-CK-B/T-P3 5000 PSI Bottom Repairable STBA-CK-B-P5		11 11
Repair Kit	STA-R-1		11
SAE to Spit Flange Connector	Code 61 3000 PSI 302 Code 62 6000 PSI 602		11 11
Spilt Flanges	Code 61 3000 PSI DB Code 62 6000 PSI DB		11 11
Diaphragm Accumulators STDA			12
	Technical Data Dimensions		12 13
	Ordering Codes		14
	US Style Gas Valve Conversion Kit	STDA-X-K	15
	Charging Kits	Metric Gas Valve STDA-CK-M-P3 US Style Gas Valve STBA-CK-B-P3	15 15
Accumulator Accesories	Accumulator Brackets AMP, AMP/D		16
	Base Brackets BB Rubber Rings RR		17 17
	U Bolts RBD		19
Bladder Accumulator Operating and Maintenance Inst			20
	Parts Break Down	3000 PSI Bottom Repairable, 1 Qt 3000 PSI Bottom Repairable, 1 to 15 Gallon	21 22
		3000 PSI Top Repairable, 2.5 to 15 Gallon	22
		3000 PSI	24
		5000 PSI Bottom Repairable 2.5 to 15 Gallon	26
	Pre-Charging and Pre-Charge Checking	5000 PSI	27
	Disassembly Procedures Trouble Shooting		29 31
	Assembly Procedures		33
	Sizing		35
Diaphragm Accumulator Operating and Maintenance I	Instructions Guidelines, Installation, and Operation		40 40
	Pre-Charging	US Style Gas Valve	40
		Metric Gas Valve	43
	Pre-Charge Checking	US Style Gas Valve	44
		Metric Gas Valve	45

R

Bladder Accumulators

Introduction

of a hydraulic system.

They are suitable for storing energy under pressure, absorbing hydraulic shock, dampening pump pulsation and flow fluctuations.

Bladder accumulators provide excellent gas and fluid separation ensuring dependable performance, maximum efficiency, and long service life.

Why use a Bladder Accumulator?

- Improves your systems efficiency
- Supplements your pump flow
- Supplies extra power in an emergency
- Compensates for any system leakage
- · Absorbs hydraulic shocks
- Accepted world wide
- High/ Low temperature tolerance
- Extremely safe (can not disassemble under pressure)
- Quick response
- Wide range of compounds for a variety of fluids

Accumulator Function

Bladder accumulators provide a means of regulating the performance The design of the Stauff bladder accumulator makes use of the difference in the compressibility between a gas (nitrogen) and a liquid (hydraulic fluids). The bladder contained in the shell is pre-charged with nitrogen gas to a pressure determined by the work to be done.

After pre-charging, the bladder occupies the entire volume of the shell, from there the work can be split into three steps.

Step 1.

When the hydraulic fluid enters the accumulator, the nitrogen contained in the bladder is compressed and its pressure is increased.

Step 2.

The compression of the bladder stops when the pressure of the fluid and nitrogen are equal (balanced). During this step the bladder is not subject to any abnormal mechanical stress.

Step 3.

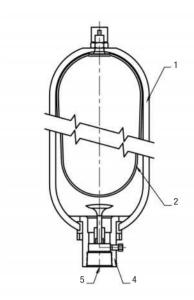
On demand, as system pressure falls, the accumulator's stored fluid is returned to the system under pressure applied by the compressed nitrogen. On completion of the hydraulic system functions, the accumulator reverts to step 1.

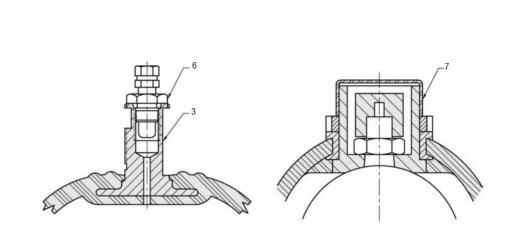
Stauff STBA Series

Material Options & Features

Main Components	Standard Material			Material Options			Features
Shell	Chrome-Mollybdenum Alloy Steel (SA-372) All sizes comply with ASME materials specifications Black Epoxy coating			Consult factory for details			Meets 4:1 safety requirements Seamless shell 1 Gallon and larger supplied with ASME Certifi- cation
		Temp	Rating		Temp	Rating	
Bladder	Nitrile (N) (Buna N) Low Temp Nitrile (L)	° c -23 +104 -51 +93	° F -10 +220 -60 +200	EPDM (D) Consult factory for	° C -48 166	° F -55 +330	With molded steel valve stems Wide range of materials and temperature ranges
	FPM (F) (Viton)	-17 +176	0 +350	other options			
Oil Port Assembly	Carbon Steel ANSI 413 Black Phosphate coati	rbon Steel ANSI 4130 Material Specification		Consult factory for other options			Proven design and reliability Many port options available High flow option

Bladder Accumulator Features


- Meets A.S.M.E. specifications
- 4:1 design factor at normal operating pressures.
- Also available with foreign certificates (upon request)
- Interchangeable with most competitor's units.
- All standard accumulators available from stock.


Size (Gallon)	Maximum Recomended Flow					
	GPM	LPM				
1 Qt	40	150				
1	150	565				
2.5 - 15	220	830				
2.5 - 15 High Flow	396	1495				

STAUFF

Specifications

Design Features & Benefits

1. Shell

STAUFF accumulator shells are made from Chrome-Molybdenum Alloy Steel (SA372) with forged ends for maximum strength providing a minimum 4 to 1 design factor at normal operating pressures. All sizes comply with ASME material specifications, 1 gallon & larger are supplied with ASME Certifications upon request.

2. Bladder

STAUFF bladders are manufactured from the most advanced elastomers which are capable of meeting a wide range of systems requirements. Bladders are offered in a variety of compounds to meet a wide range of fluids and operating temperatures. STAUFF can supply Buna, Low Temperature Buna and Viton bladders from stock.

3. Bladder Stems

All bladder accumulators, sizes 1 gallon and larger, are fitted as standard with a two-piece bladder stem and a replaceable gas valve cartridge for ease of serviceability.

4. Port Assemblies

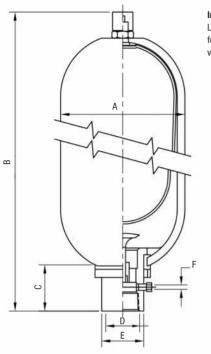
Standard oil service ports are made from high-strength alloy steel for maximum durability.

5. Fluid Ports

SAE straight thread (standard), NPT and Split Flange Adaptors are available (See page 11). A Bleed Port (plugged) is included as standard on all accumulator sizes 1 gallon and larger.

6. Gas Valve

All accumulators are fitted with a gas valve for ease of gas pre-charging. One-gallon and larger units are equipped with a cored gas valve cartridge (ISO-4570-8V1) for ease of maintenance. 5000 PSI units are equipped with a high pressure cored gas valve cartridge (Mil. Spec. M6164-2). For safety, the gas valve vents if unscrewed.


7. Top Repairable

The top repairable design permits easy maintenance of the Accumulator Bladder without removing the accumulator from service, thus minimizing costly downtime.

3000 PSI / 207 Bar Bottom Repairable

Dimensions

Installation Note:

Leave approximately 8"(200mm) for installation of gas charging valve.

Optional Split Flange Adapter Port. For use with 2" SAE code 61 split flange (not included).

Nominal	Gas Volume	Maximum	Dimensions (mm/in)							
Capacity	(in ³ /cm ³)	Working				D		-	F	(Kg/Lb)
(Gallons/Liter)		(PSI/Bar)	A	В	C	SAE	NPT	E	SAE	
*1 Qt.	67.1	3000	114	291	50	SAE-12	3/4" 42 1.65	42 N/A	N/A	4.5
1.0	1190	207 .	4.49	11.46	1.97	(1-1/16" - 12)		1.65		10
1.0	234.6	3000	168	420	87	SAE-20	4 4 (42	60	SAE-6	15
4.0	3845	207	6.8	16.55	3.42	(1-5/8" - 12)	1-1/4"	2.36	(9/16"-18)	34
2.5	587	3000	229	545	90	SAE-24	2"	76	0/10/1 10	36
10	9620	207	9.02	21.45	3.54	(1-7/8" - 12)	2	3.00		79
5	1132	3000	229	850	90	SAE-24	2"	76	SAE-6	54
20	18548	207	9.02	33.46	3.54	(1-7/8" - 12)	2	3.00	(9/16"-18)	119
10	2075	3000	229	1375	90	SAE-24	2"	76	SAE-6	100
40	34000	207	9.02	54.13	3.54	(1-7/8" - 12)	2	3.00	(9/16"-18)	220
11	2514	3000	229	1530	90	SAE-24	0"	76	SAE-6	109
44	41210	207	9.02	60.24	3.54	(1-7/8" - 12)	2"	3.00	(9/16"-18)	240
15	3234	3000	229	1980	90	SAE-24	0.1	76	SAE-6	138
60	53000	207	9.02	77.95	3.54	(1-7/8" - 12)	2"	3.00	(9/16"-18)	304

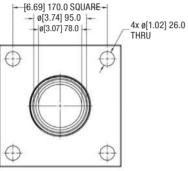
* In accordance with ASME VII calculations only

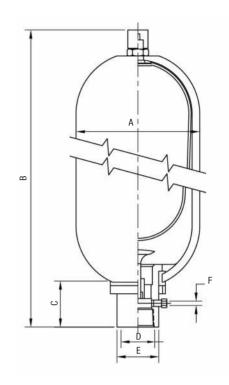
Capacities & Dimensions

Installation Note:

valve.

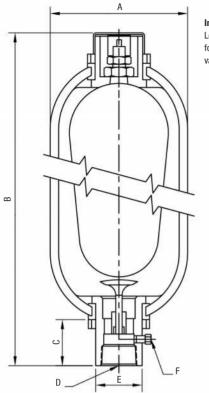

Leave approximately 8"(200mm) for installation of gas charging


3000 PSI / 207 Bar Bottom Repairable High Flow

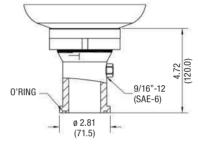

Dimensions

Optional Split Flange Adapter Port. For use with 2" SAE code 62 split flange (not included).

5.71 [145.0]



Nominal	Gas Volume	Maximum	Dimensions (mr	n/in)					Net Weight
Capacity (Gallons/Liter)	(in ³ /cm ³)	/cm ³) Working (PSI/Bar)	A	В	С	D	E	F	(Kg/Lb)
						NPT		SAE	
2.5	587	3000	229	608	155	3-1/2" Male or 3" Female	108	SAE-6	37
10	9620	207	9.02	23.94	6.10		4.25	(9/16"-18)	82
5	1132	3000	229	913	155	0.1/0% Mala av 0% Farrala	108	SAE-6 (9/16"-18)	55
20	18548	207	9.02	35.95	6.10	3-1/2" Male or 3" Female	4.25		121
10	2075	3000	229	1438	155	3-1/2" Male or 3" Female	108	SAE-6 (9/16"-18)	101
40	34000	207	9.02	56.61	6.10	3-1/2 Male of 3 Female	4.25		223
11	2514	3000	229	1588	155	3-1/2" Male or 3" Female	108	SAE-6	110
44	41210	207	9.02	62.52	6.10	3-1/2 Male of 3 Female	4.25	(9/16"-18)	243
15	3234	3000	229	2043	155	3-1/2" Male or 3" Female	108	SAE-6	139
60	53000	207	9.02	80.43	6.10	3-1/2 Male of 5 Female	4.25	(9/16"-18)	306


3000 PSI / 207 Bar Top Repairable

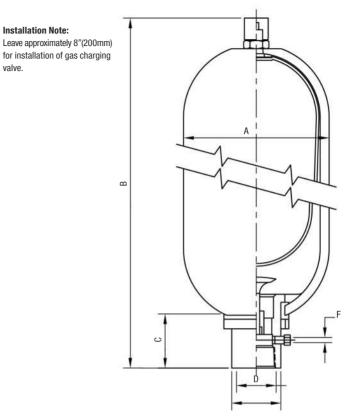
Dimensions

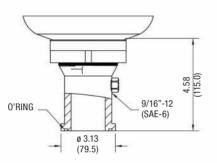
Installation Note:

Leave approximately 8"(200mm) for installation of gas charging valve.

Optional Split Flange Adapter Port. For use with 2" SAE code 61 split flange (not included).

Nominal	Gas Volume	Maximum	Dimensions	s (mm/in)							
Capacity (Gallons/Liter)	(in³/cm³)	Working (PSI/Bar)	Α	В	C	D SAE	NPT	E	F SAE	(Kg/Lb)	
2.5	587	3000	229	541	90	SAE-24		76	SAE-6	36	
10	9620	207	9.02	21.30	3.54	(1-7/8" - 12)	2"	3.00	9/16"-18)	79	
5	1132	3000	229	841	90	SAE-24	0"	76	SAE-6	54	
20	18548	207	9.02	33.11	3.54	(1-7/8" - 12)	2"	3.00	(9/16"-18)	119	
10	2075	3000	229	1371	90	SAE-24	2"	76	SAE-6	100	
40	34000	207	9.02	54.00	3.54	(1-7/8" - 12)	2	3.00	(9/16"-18)	220	
11	2514	3000	229	1371	90	SAE-24	0"	76	SAE-6	109	
44	41210	207	9.02	54.00	3.54	(1-7/8" - 12)	2"	3.00	(9/16"-18)	240	
15	3234	3000	229	1976	90	SAE-24	0"	76	76 SAE-6	138	
60	53000	207	9.02	77.80	3.54	(1-7/8" - 12)	2) 2"	3.00	(9/16"-18)	304	


Consult factory for other sizes


Installation Note:

valve.

5000 PSI / 345 Bar Bottom Repairable

Dimensions

Optional Split Flange Adapter Port. For use with 2" SAE code 62 split flange (not included).

Nominal	Gas Volume	Maximum	Dimensions (mr	n/in)						Net Weight
Capacity (in ³ /cm ³) (Gallons/Liter)	(in ³ /cm ³)	Working (PSI/Bar)	A	В	С	D		E	F	(Kg/Lb)
						SAE	NPT		SAE	
2.5	587	5000	245	560	90	SAE-24	0.1	76	SAE-6	57
10	9620	345	9.65	22.05	3.54	(1-7/8" - 12)	2	3.00	9/16"-18)	126
5	1132	5000	245	870	90	SAE-24	2"	76	SAE-6 (9/16"-18)	91
20	18548	345	9.65	34.25	3.54	(1-7/8" - 12)		3.00		200
10	2075	5000	245	1395	90	SAE-24	0"	76	SAE-6	159
40	34000	345	9.65	54.92	3.54	(1-7/8" - 12)	2	3.00	(9/16"-18)	350
15	3234	5000	245	1990	90	SAE-24 (1-7/8" - 12)	2"	76	SAE-6 (9/16"-18)	227
60	53000	345	9.65	78.35	3.54		2	3.00		500

Consult factory for other sizes

Bladder Accumulator - Type STBA

Order Codes

STBA H - 010	- 3000 S B / N U C 7 C / N C / C
1 2 3	4 56 78900 1213 14
Model Code Bladder Accumulator STBA Accumulator Type	(6) Bottom or Top Repairable (2) Fluid Port Connection Bottom Repairable B Top Repairable T (7) Bladder Material (2) Fluid Port Connection
Standard Omit Hi Flow H	(7) Bladder Material 1-1/2" SAE Code 62 Split Flanged (6000 PSI) F Nitrile (Buna N) N Four Bolt Flange (High Flow) H Low Temp Nitrile L EPDM D (13) Material FPM F Carbon Steel (STD) C
Volume (Gal) Size 1 Quart 001 1 Gallon 004 2.5 Gallon 010 5 Gallon 020 10 Gallon 035	Please consult STAUFF for availability of other materials Please consult STAUFF for availability of other materials (a) Gas Valve Connection (a) Material or Coating of the Shell Cored gas valve for 3000 PSI Accumulators (b) Material or Coating of the Shell Carbon Steel, Black Epoxy Coated (STD) (c) Please consult STAUFF for availability of other materials (c) Gas Valve Material (c) Gas Valve Material
11 Gallon 040 15 Gallon 055 (4) Pressure Rating According to Standard 3000 PSI / 207 Bar 3000 5000 PSI / 345 Bar 5000	Carbon Steel (Standard) C Consult STAUFF for availability of other materials 10 Bladder Stem Size 5/8"-18 UNF (For use with 1 Quart 3000 PSI) 5 7/8"-14 UNF (For use with 1 Gal to 15 Gal 3000 PSI) 7 2"-12 UNF (For use with 5000 PSI) 2
 (5) Design Approval ASME ASME S This catalog relates to ASME certified accumulators. ASME certifications are available upon request. Please request at the time of ordering. CE PED (Europe), AS1210 (Australia) and GB/T 20663 (China) certified accumulators are also available. Please consult STAUFF for details. 	12 -12 UNF (FOI USE WILL SUGU FSI) 2 10 Bladder Stem Material Carbon Steel (Standard) C Please consult STAUFF for availability of other materials

Availability Chart

Size Code	Gallons (Ltrs) Volume	3000 PSI Bottom Repairable	3000 PSI Bottom Repairable High Flow	3000 PSI Top Repairable	5000 PSI Bottom Repairable
001	1 Quart (1 Litre)	Yes	N/A	N/A	N/A
004	1 Gallon (4 Litre)	Yes	N/A	N/A	N/A
010	2.5 Gallon (10 Litre)	Yes	Yes	Yes	Yes
020	5 Gallon (20 Litre)	Yes	Yes	Yes	Yes
035	10 Gallon (35 Litre)	Yes	Yes	N/A	Yes
040	11 Gallon (40 Litre)	Yes	Yes	Yes	N/A
055	15 Gallon (55 Litre)	Yes	Yes	Yes	Yes

Fluid Port Connections

	Size Code	1 Qrt	1 Gal	25101569	High Flow 2.5 to 15 Gal
Threaded SAE	U	SAE 12 (1-1/16"-12)	SAE 20 (1-5/8"-12)	SAE 24 (1-7/8"-12)	N/A
NPT	N	3/4	1-1/4	2"	3.5" Male
	N1	N/A	N/A	N/A	3" Female
Split Flanged Code 61 - 3000 PSI	S	N/A	N/A	1-1/2"	N/A
Split Flanged Code 62 - 6000 PSI	F	N/A	N/A	1-1/2"	N/A
Four Bolt Flange	Н	N/A	N/A	1-1/2"	See page 5

Nitrile (N)

(Buna N) Low Temp Nitrile (L)

FPM (F)

EPDM (D)

Consult Factory for other options

Viton

3000 PSI / 5000 PSI - 207 / 345 Bar

Stauff offers a wide range of bladder materials to suit most applications. Stauff bladder kits include Qty (1) Bladder with molded valve stem Qty (1) Gas valve and o-ring Qty (1) Poppet valve o-ring Qty (1) Back up seal o-ring See the technical appendix for more information

°C

Temperature Rating

-23 ... +104

-51 ... +93

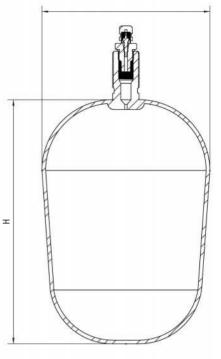
-17 ... +176

-48 .. 166

°F

-10 ... +220

-60 ... +200


0...+350

-55 .. +330

	1 to 15 Gallon
1	Stem Detail 3000 PSI

Accumulator	Dimensions (mm/in)	Dimensions (mm/in)									
Nominal Capacity	н	D	Stem Thread		Gas Valve	Gas Valve					
Gallons/Liter	n	U	3000 PSI	5000 PSI	3000 PSI	5000 PSI					
1 Qt.	146 +/- 12.7	95.3	5/8"-18 UNF-2A	N/A	Valve Core	N/A					
1.0	5.75 +/- 0.5	3.75	5/0 - 10 UNF-2A	N/A	STDA-AS-GV-1Qt-P3	INA					
1.0	203 +/- 12.7	139.7	7/8"-14 UNF-2A	N/A	Valve Cartridge	N/A					
4.0	8.0 +/- 0.5	5.50	7/6 -14 UNF-2A	IV/A	STA-AS-GV-1-15-P3	IV/A					
2.5	292 +/- 12.7	203	7/8"-14 UNF-2A	2"-12 UN-2A	Valve Cartridge	Valve Cartridge					
10	11.50 +/- 0.5	8.0	7/6 -14 UNF-2A	2 -12 UN-2A	STA-AS-GV-1-15-P3	STA-AS-GV-1-15-P5					
5	584 +/- 25.4	203	7/8"-14 UNF-2A	2"-12 UN-2A	Valve Cartridge	Valve Cartridge					
20	23.0 +/- 1.0	8.0	7/0 -14 UNF-2A	2 -12 UN-2A	STA-AS-GV-1-15-P3	STA-AS-GV-1-15-P5					
10	1105 +/- 25.4	203	7/8"-18 UNF-2A	2"-12 UN-2A	Valve Cartridge	Valve Cartridge					
35	43.5 +/- 1.0	8.0	7/0 -10 UNF-2A	2 -12 UN-2A	STA-AS-GV-1-15-P3	STA-AS-GV-1-15-P5					
11	1257 +/- 25.4	203	7/8"-14 UNF-2A	2"-12 UN-2A	Valve Cartridge	Valve Cartridge					
40	49.5 +/- 1.0	8.0	7/0 -14 UNF-ZA	2 -12 UN-2A	STA-AS-GV-1-15-P3	STA-AS-GV-1-15-P5					
13	1626 +/- 25.4	203	7/0" 10 UNE 04	0% 10 UN 04	Valve Cartridge	Valve Cartridge					
50	64.0 +/- 1.0	8.0	7/8"-18 UNF-2A	2"-12 UN-2A	STA-AS-GV-1-15-P3	STA-AS-GV-1-15-P5					
15	1727 +/- 25.4	203			Valve Cartridge	Valve Cartridge					
60	68.0 +/- 1.0	8.0	7/8"-14 UNF-2A	2"-12 UN-2A	STA-AS-GV-1-15-P3	STA-AS-GV-1-15-P5					

Stauff accumulators and replacement bladder kits are shipped with industry standard gas valves and protective caps.

3000 PSI Cored Gas Valve Cartridge (ISO-4570-8V1) Stauff Part Number STA-AS-GV-1-15-P3

For 3000 PSI Accumulators,

1 Gallon to 15 Gallon

5000 PSI Valve Cartridge Stauff Part Number STA-AS-GV-1-15-P5

For 5000 PSI Accumulators, 2.5 Gallon to 15 Gallon

GATVAIVE

Bladder Accumulator = Type STB

Order Codes

STB	- 010 -	3000	/ N	U	С	7	C	;
1	2	3	4	(5)	6	\bigcirc		3)

(1) Model Code	
Bladder Kit	STB
\sim \sim	
② Size	
Volume (Gal)	Code
1 Quart	001
1 Gallon	004
2.5 Gallon	010
5 Gallon	020
10 Gallon	035
11 Gallon	040
15 Gallon	055

③ Pressure Rating According to Standard 3000

3000 PSI / 207 Bar 5000 PSI / 345 Bar

(4) Bladder Material

Nitrile (Buna N)	Ν
Low Temp Nitrile	L
EPDM	D
FPM	F

Please consult STAUFF for availability of other materials

(5) Gas Valve Connection

5000

9		
	Cored gas valve for 3000 PSI Accumulators	U
	Military Style Gas Valve for 5000 PSI Accumulators	М
6	Gas Valve Material	
	Carbon Steel (Standard)	C
	Consult STAUFF for availability of other materials	
7	Bladder Stem Size	
	5/8"-18 UNF (For use with 1 Quart 3000 PSI)	5
	7/8"-14 UNF (For use with 1 Gal to 15 Gal 3000 PSI)	7
	2"-12 UNF (For use with 5000 PSI)	2
	Pladdar Stom Matarial	
8	Bladder Stem Material	_

Carbon Steel (Standard) C Please consult STAUFF for availability of other materials

Stauff Bladder Kits include:

- Qty (1) Bladder with molded valve stem
- Qty (1) Gas valve and o-ring

Qty (1) Poppet valve o-ring

Qty (1) Back up seal o-ring

Please see the maintenance instructions on page 20 for details

Charging Kit

STBA-CK-B/T-P3

Charging Kit for Bottom and Top Repairable 3000 PSI Accumulators Includes:

- STBA-PC2157 Charge Valve assembly and test point
- SPG-063-0250-01-P-B04 Gauge 0 to 3625 PSI (0 to 250 bar) SPG-063-0400-01-P-B04 Gauge 0 to 5800 PSI
- STBA-P3-3048MM-B 3000 PSI Nitrogen bottle adapter and hose assembly, 3048mm (12 in) long
- STBA-50019 Fitting Adaptor, .305-32 UNS (female) to 5/8"-18-2AUNF (Male)
- STBA-10143 Fitting Adaptor, 7/8"-14 UNF (female) to 5/8"-18-2AUNF (Male)
- STBA-VLV-EXT-1 Gas Valve Extension for 3000 PSI Top Repairable Accumulator
- STBA-C-1 Case with foam

STBA-CK-B-P5

Charging Kit for Bottom Repairable 5000 PSI Accumulators Includes:

- STBA-PC2157 Charge Valve assembly and test point
- SPG-063-0400-01-P-B04 Gauge 0 to 5800 PSI (0 ... 400 bar)
- STBA-P5-3048MM-B 5000 PSI Nitrogen bottle adapter and hose assembly, 3048mm (12 in) long
- STBA-50019 Fitting Adaptor, .305-32 UNS (female) to 5/8"-18-2A UNF (Male)
- STBA-C-1 Case with foam

Repair Kit

Repair Kit Part # STA-R-1

- Repair kit includes the following parts:
- Set of pull rods
- Hydraulic wrench
- Set of gas valve tools
- Case and foam

Accumulator Safety Valve

Accumulator Safety Valves

- Provides manual isolation of the accumulator from the hydraulic circuit
- Integrated relief valve to protect the accumulator from over pressure
- Available with manual or electric dump vavles
- Consult STAUFF for more information

Code #61 (3000 PSI)

SAE to Split Flange Connector							
Part #	Description						
302-12-12	#12 SAE to 3/4" Flange						
302-20-20	#20 SAE to 1-1/4" Flange						
302-24-24	#24 SAE to 1-1/2" Flange						

Code #62 (6000 PSI)

SAE to Split Flange Connector						
Part #	Description					
602-12-12	#12 SAE to 3/4" Flange					
602-20-20	#20 SAE to 1-1/4" Flange					
602-24-24	#24 SAE to 1-1/2" Flange					

Code #61 (3000 PSI)

Split Flanges	
Part #	Description
DB-302AS-U-B#K	3/4" Split Flange
DB-304AS-U-B#K	1-1/4" Split Flange
DB-305AS-U-B#K	1-1/2" Split Flange

Code #62 (6000 PSI)

Split Flanges	
Part #	Description
DB-602-AS-U-B#K	3/4" Split Flange
DB-604AS-U-B#K	1-1/4" Split Flange
DB-605AS-U-B#K	1-1/2" Split Flange

Port Adaptors (SAE to Flange)


Product Information

Diaphragm Accumulator = STDA Series

Technical Data

Technical Data

- Electron Beam Welded Construction
- High Strength Alloy Steel Shell
- Compact Design
- Operating Pressure to 3600 PSI (250 Bar)
- · Capacity up to 3.5 Liters
- Hydrin (ECO) Diaphragm Material (Standard)
- Operating Temperature Range -40° ... +80°C / (-40° ... +170°F)
- Low Permeation Coefficient
- Up to 1:8 Compression Ration (Precharge/Maximum Working)
- UNF Oil Port Connection (Standard)
- Conforms to CE97/23
- Corrosion Resistant Black Gloss Finish
- Metric Gas Valve (Standard)

Options

Gas Port

- Precharged Hermetically Sealed (non-rechargeable)
- US Style Gas Valve

Oil Port

BSP, Metric, Male/Female Metric Combination, ORFS

Diaphragm Material

- Nitrile (Buna)
- Fluroelastomer (Viton)
- Other materials upon request

Why use a Diaphragm Accumulator?

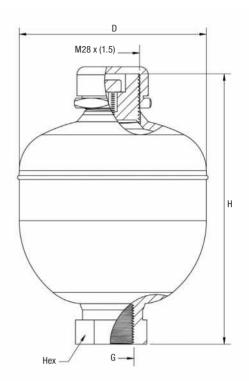
- Compact & Lightweight Design
- Fast Response Time
- Cost Effective
- Supplements Pump Flow
- Extends System Life
- Absorbs Shock
- Contamination Tolerant

Main Components	Standard Mate	rial		Material Options		
Shell		oy Steel Black Ena electron-beam wel		Consult factory		
		Temperature R	ating			
		°C	°F			
Diaphragm	Eco (Hydrin)	-40 +80	-40 +176	Consult factory for other options		
	NBR (Nitril-Buna-N)	-10 +80	+14 +176			
Shut-Off Button	Delrin			Consult factory		
Gas Valve	M28 x 1.5	M28 x 1.5		128 x 1.5		US Style Gas Valve For Hermetically Sealed or other options, please consult the factory
Fluid Port	Steel			Consult factory		

Diaphragm Accumulator Features

- Maximum compression ratio = 1 : 8
- (maximum working pressure / pre-charge pressure) Refer to Stauff catalog for individual accumulator compression ratios.
- Compact and light weight
- Cost effective
- Non-repairable design
- Interchange with most competitor's units
- All standard accumulators available from stock.

Maximum Flow Rates


	Max. Recommended Flow							
Size (Liters)	Normal C)peration	When fully discharging					
	GPM	LPM	GPM	LPM				
0.075 & 0.16	11	40	2.6	10				
0.32 & 1.40	26	100	11	40				
2.00 & 3.50	42	160	16	60				

Dimensions

Diaphragm Accumulator - STDA Series

Dimensions

				Maximum ΔP	Maximum	Maximum	Dimension (mm/in)		Oil Port		
Nominal Size Code	Gas Volume (in³/litre)		Test Pressure (PSI/Bar)	Dynamic (PSI/Bar)	Gas Pre- Charge (PSI/Bar)	Compression Ratio	н	D	G Female	Hex (mm/in)	Net Weight (Kg/Lb)
007	4.6	3625	5439	2031	1885		111	64	SAE-6	32	0.7
007	0.075	250	375	140	130		4.35	2.52	(9/16"-18)	1.25	1.54
016	9.8	3625	5439	2031	1885	1	119	75	SAE-6	32	1
010	0.16	250	375	140	130		4.69	2.95	(9/16"-18)	1.25	2.2
000	19.5	3045	4568	1740	1885	1	134	92.5	SAE-8	32	1.4
032	0.32	210	315	120	130	- 1:8	5.28	3.64	(3/4"-16)	1.25	3.08
050	30.5	3045	4568	1450	1885		151	106.7	SAE-8	41	2
050	0.5	210	315	100	130		5.95	4.2	(3/4"-16)	1.61	4.4
075	45.8	3045	4568	1483	1885		166	121.5	SAE-8	41	2.6
075	0.75	210	315	93	130		6.54	4.78	(3/4"-16)	1.61	5.72
100	61	3045	4568	1667	1885		180	136.2	SAE-8	41	3.5
100	1.0	210	315	115	130		7.09	5.06	(3/4"-16)	1.61	7.7
1.40	85.4	3045	4568	2031	1885		191	147.3	SAE-8	41	6.6
140	1.4	210	315	140	130	1	7.52	5.8	(3/4"-16)	1.61	14.52
000	122	3625	5439	2031	1885	1	252	156	SAE-12	41	9.2
200	2.0	250	375	140	130		9.92	6.14	(1/16"-12)	1.61	20.24
200	170.9	3625	5439	2031	1885	1.0	267	174	SAE-12	41	10
280	2.8	250	375	140	130	1:6	10.51	6.85	(1/16"-12)	1.61	22
250	213.6	3625	5439	2031	1885	1.4	306	174	SAE-12	41	12.8
350	3.5	250	375	140	130	1:4	12.05	6.85	(1/16"-12)	1.61	28.16

Consult the factory for additional pressure ratings and port options. Minimum order quanities may be required

Order Code

Order Codes

(1) Model Code

STAUFF Non Repairable Diaphragm Accumulator STDA

(2) Volume

	0.075 Liter / 250 Bar	007
	0.16 Liter / 250 Bar	016
	0.32 Liter / 210 Bar	032
	0.5 Liter / 210 Bar	050
	0.75 Liter / 210 Bar	075
	1 Liter / 210 Bar	100
	1.4 Liter / 210 Bar	140
	2 Liter / 210 Bar	200
	2.8 Liter / 250 Bar	280
	3.5 Liter / 250 Bar	350
C)ther pressures available on request.	

(3) Diaphragm Material

Nitrile
Hydrin for Low Temp
Fluoroelastomer
Other materials available on request.
other materials available on request.

(4) Maximum Working Pressure

210 Bar 250 Bar

Other pressures available on request.

(6) Gas Port Connection

M28 x 1.5 (Standard)	М
US Style Valve (Uses adaptor)	U
Hermetically Sealed	Н
Note: Minimum order requirement needed for sealed gas port. Consult STAUFF.	

7 Design Approval

	No certification	Blank
	(1-3.6 ltr) CE Mark	C
	Please consult STAUFF for other certifications	
8	Pre-Charge (Factory filled)	
	Factory filled during manufacture xxx	

actory mileu uuring manufacture XXX	
pressure (Bar)	NXXX

(5) Port Options

Connection Style		Volume (Liters)								
Code	Connection	0.075	0.16	0.32	0.5	0.75	1	1.4	2	2.8	3.5
	Туре										
U**	UNF	9/16-18	9/16-18	3/4-16	3/4-16	3/4-16	3/4-16	3/4-16	1 -1/16-12	1 -1/16-12	1 -1/16-12
B*	BSPP	G 1/2"	G 1/2"	G 1/2"	G 1/2"	G 1/2"	G1/2"	G 1/2"	G 3/4"	G 3/4"	G 3/4"

p

NBR EC0

FKM

P3

P4

** Standard for North America * Consult STAUFF for availability

* Consult STAUFF for additional port options

Gas Valve Conversion Kit

STDA-X-AK

Easily converts the standard M28 X 1.5 gas valve on diaphragm accumulators to the "US Style" cored type gas valve.

Parts included in the adapter kit:

- Aluminum Protective cap (item 7)
- · Gas valve adapter assembly with installed gas valve core (item5)
- Gas Valve seal (item4)
- Assembly instructions
- IMPORTANT: Before installing the new gas valve, make sure the accumulator is isolated from the hydraulic system and that the gas pressure has been released from the accumulator using the proper charging kit. Please see the operating and maintenance instructions for details.

Charging Kit

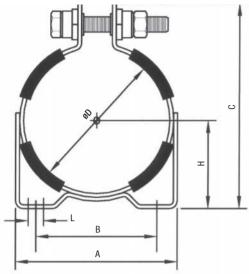
STDA-CK-M-P3

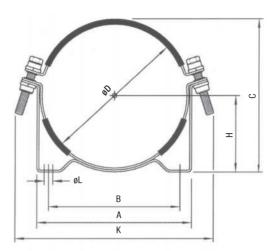
Charging kit for diaphragm accumulators with the M28 X 1.5 gas Charging kit for diaphragm accumulators with the US style cored Valve 3625 PSI (250 bar) rated Includes:

- STDA-PCM2155 Charge Valve assembly and test point
- STBA-P3-3048MM-B 3000 PSI Nitrogen bottle adapter and hose assembly, 3048mm (12 in) long
- STDA-AW6MM 6 mm hexagon wrench
- STBA-C-1 Case with foam

STBA-CK-B-P3

gas valve 3625 PSI (250 bar) rated Includes:


- STBA-PC2157 Charge Valve assembly and test point
- SPG-063-0250-01-P-B04 Gauge 0 ... 3625 PSI (0 ... 250 bar)
 SPG-063-0250-01-P-B04 Gauge 0 ... 3625 PSI (0 ... 250 bar)
 - STBA-P3-3048MM-B 3000 PSI Nitrogen bottle adapter and hose assembly, 3048mm (12 in) long
 - STBA-50019 Fitting Adaptor, .305-32 UNS (female) to 5/8"-18-2AUNF(Male)
 - STBA-10143 Fitting Adaptor, 7/8"-14 UNF (female) to 5/8"-18-2AUNF (Male)
 - STBA-C-1 Case with foam



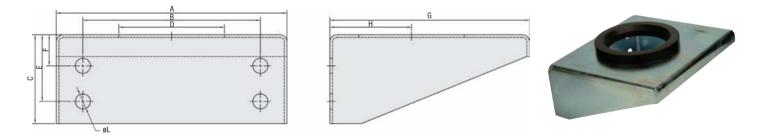
Accumulator Brackets = Type AMP & AMP/D

Type AMP/D

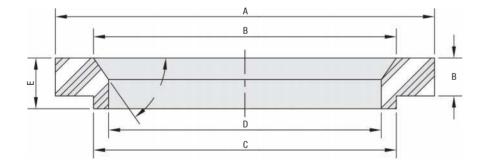
STAUFF Clamp Part	Dimensions (mm/in)						
Number	"øD" Nom	A	В	C	н	L (Slot)	Width
AMP108	108	138	100	150	64	9.7 X 12.7	32
AWF 100	4.25	5.43	3.94	5.91	2.52	.38 X .50	1.25
AMP114	114	134	100	170	73	9.7 X 12.7	32
AWP114	4.50	5.26	3.94	6.68	2.87	.38 X .50	1.25
AMP126	126	175	136	181	77	9.7 X 12.7	32
AIVIP 120	4.96	6.89	5.35	7.12	3.03	.38 X .50	1.25
AMP146	146	168	136	197	89	9.7 X 12.7	32
AWF 140	5.75	6.63	5.35	7.75	3.50	.38 X .50	1.25
AMD170	172	191	153	229	100	9.7 X 12.7	32
AMP172	6.75	7.50	6.02	9.00	3.94	.38 X .50	1.25
AMDOOG	206	254	208	248	115	9.7 X 12.7	32
AMP206	8.11	10.00	8.20	9.75	4.53	.38 X .50	1.25
AMP231	231	254	208	274	125	9.7 X 12.7	32
AIVIF 201	9.10	10.00	8.20	10.80	4.93	.38 X .50	1.25

STAUFF Clamp	Dimensions (mm	ı/in)						
Part Number	"øD" Nom	A	В	C	н	К	L	Width
AMD/D006	206	260	208	230	118	275	15.0	38
AMP/D206	8.11	10.24	8.19	9.06	4.65	10.83	0.59	1.50
AMP/D210	213	270	216	238	123	285	15.0	38
AWP/D210	8.39	10.63	8.50	9.37	4.84	11.22	0.59	1.50
AMP/D219	219	268	216	242	123	285	15.0	38
AWF/D219	8.63	10.55	8.50	9.53	4.84	11.22	0.59	1.50
AMP/D228	232	254	216	251	126	317	15.0	38
AWF/D220	9.12	10	8.50	9.89	4.95	12.48	0.59	1.50
AMP/D254	248	264	216	267	135	330	15.0	38
AWF/D254	9.75	10.40	8.50	10.50	5.31	13.00	0.59	1.50
AMP/D286	286	332	280	315	163	355	15.0	38
AWF/D200	11.26	13.07	11.02	12.40	6.42	13.98	0.59	1.50
AMP/D310	310	332	280	334	170	380	15.0	38
AWF/D310	12.20	13.07	11.02	13.15	6.69	14.96	0.59	1.50
AMP/D362	359	427	365	383	195	424	15.0	38
AWIF/D30Z	14.13	16.80	14.35	15.08	7.68	16.70	0.59	1.50

Type BB & RR Series


Specifications

- Rubber Bushing to reduce vibration and noise
- Compensation for thermal expansion and contraction
- Galvanized to resist corrosion
- Special sizes and designs are available upon request


Base Bracket with Rubber Ring

(to specify base bracket less rubber ring remove "R" from model number)

Model	Dimensions (mm/in)									
woder	A	В	C	D	E	F	G	Н	L	(kg/lbs)
BB120R	260	200	100	120	75	35	225	100	17	2.3
DDIZUN	10.24	7.87	3.94	4.72	2.95	1.38	8.86	3.94	.67	5.1
BB170R	260	200	100	170	75	35	225	123	17	2.0
DDI/UK	10.24	7.87	3.94	6.69	2.95	1.38	8.86	4.84	.67	4.5
BB211R	390	270	240	211	7.09	60	390	195	22	7.7
DDZTIK	15.35	10.63	9.45	8.31	60	2.36	15.35	7.68	.87	16.9

Rubber Ring Only

Model	Dimensions (mm/in)	Dimensions (mm/in)								
Model	A	В	C	D	E	F	Bracket No.			
RR108	150	120	119	108	20	15	BB-120			
nniuo	5.91	4.72	4.69	4.25	0.79	0.59	DD-120			
RR160	200	170	169	159	20	15	BB-170			
nn 100	7.87	6.69	6.65	6.26	0.79	0.59	DD-170			
RR200	250	220	210	200	25	20	BB-211			
nn200	9.84	8.66	8.27	7.87	0.98	0.79				

www.stauff.com

Mounting Brackets Compatibility Information for Bladder Accumulators

For 3000 PSI Bla	dder Accumulators				For 5000 PSI Bladder Accumulators					
Bladder Accumulator Size	Clamp Number	Qty.	Nominal Diameter (mm/in)	Base Bracket	Bladder Accumulator Size	Clamp Number	Qty.	Nominal Diameter (mm/in)	Base Bracket	
1 Quart	AMP114	1	114	None				126		
			4.50	None	1 Quart	AMP126		4.96	None	
1 Gallon	AMP172	1	171	BB120R				180		
			6.75	5572011	1 Gallon Af	AMP172	1	7.00	BB120R	
2.5 Gallon	on AMP/D228	1	231	BB170R		AMP/D254			BB170R	
2.0 00101			9.10		2.5 Gallon		1	248		
5 Gallon	AMP/D228	2	231	BB170R		111178201		9.75		
Juanon	AIVIF/DZ20	2	9.10	BETTON				248	BB170R	
10 Gallon	AMP/D228	2	231	BB170R	5 Gallon	AMP/D254	2	9.75		
	This TELO	2	9.10	bbrron				248	BB170R	
11 Gallon	AMP/D228	2	231	BB170R 10 Gallon	10 Gallon	AMP/D254	2			
TT Gallon	AIVIF/DZ20	2	9.10					9.75		
15 Collon	AMP/D228	2	231	BB170R	15 Gallon	AMP/D254	3	248	BB170R	
15 Gallon	AIVIP/DZZO	3	9.10					9.75		

Mounting Brackets Compatibility Information for Piston Accumulators

Piston Accumulator Size	Clamp Number	Qty.	Diameter (mm/in)	Base Bracket	Bladder Accumulator Size	Clamp Number	Qty.	Diameter (mm/in)	Base Bracket
1 Quart	AMP114	1	114	None		AMP146	3	140	None
			4.50				Ū	5.5	
2 Quart	AMP114	1	4.50	None		AMP172	2	178	BB170R
			114		5 Gallon	7.000 TT2	L	7.0	bbrron
	AMP114	1	4.50	None		AMP/D206	1	203	BB170R
1 Gallon	AMP146	2	140	None		AIVIP/D206		8.0	DDI/UK
- dalloll		-	5.5					228	
	AMP172	1	178	BB120R		AMP/D228	1	9.0	BB170R
			7.0					203	
	AMP114	2	4.50	None		AMP/D206	2	8.0	BB170R
1.5 Gallon	AMP146	2	140	None	7.5 Gallon			228	
1.5 Galioli	AIVIF 140	2	5.5	none		AMP/D228	1	9.0	BB170R
	AMP172	1	178	BB120R				203	
			7.0			AMP/D206	2	8.0	BB170R
2 Gallon	AMP114	1	4.50	None	10 Gallon			228	
			140		-	AMP/D228	2	9.0	BB170R
	AMP146	2	5.5	None				203	
2.5 Gallon	AMP172	1	178	BB120B	BB120R 15 Gallon	AMP/D206	2	8.0	BB170R
2.0 dalloli	7.001 172		7.0	DDT2011				228	
	AMP/D206	1	203			AMP/D228	2	9.0	BB170R
			8.0					228	
	AMP146	2	5.5	None	17.5 Gallon	AMP/D228	2	9.0	BB170R
0.0.11	4140470		178	DD100D					
3 Gallon	AMP172	1	7.0	BB120R		AMP/D206	3	203	BB170R
	AMP/D206	1	203	BB170R	20 Gallon			8.0	
			8.0			AMP/D228	3	228	BB170R
	AMP146	2	140 5.5	None				9.0	
			178		23 Gallon	AMP/D228	3	228	BB170R
4 Gallon	AMP172	1	7.0	BB120R				9.0	
	AMP/D206	1	203	BB170R	25 Gallon	AMP/D228	3	228	BB170R
	AIVIE / DZ00		8.0				Ŭ	9.0	

Round Steel U-Bolt Clamps

Round Steel U-Bolt Clamps Type RBD

Order Codes *RBD*W1*A 30 Clamp Assembly is consisting of one Round Steel U-Bolt (type RBD) and two Nuts (to DIN EN ISO 4032). * Clamp Assembly (as listed above) RBD * Clamp Assembly (as listed above) * Material code Carbon Steel, untreated W1 Carbon Steel, zinc-plated and thick-film passivated W66 * Dimension A (mm) A 30 Please note: All items are supplied non-assembled.

nmm 2 165 36 36 1 157 2.76 1.57 1.57 36.9 1.06 34.0 1.18 1.07 1.67 1.67 1.67 37.0 1.08 36.0 1.18 1.08 1.87 1.67 1.67 37.0 1.38 1.08 1.09 1.89 1.69 1.69 1.69 37.0 1.38 1.09 1.09 1.69 1.69 1.69 1.69 37.0 1.39 1.09 1.18 1.69 1.69 1.69 1.69 37.0 1.69 1.69 1.69 1.69 1.69 1.69 1.69 37.0 1.69 1.69 1.69 1.69 1.69 1.69 1.69 37.0 1.69 1.69 1.69 1.69 1.69 1.69 1.69 37.0 1.69 1.69 1.69 1.69 1.69 1.69 1.69 37.0 1.17 1.69 1.69 1.69 1.69 1.69 1.69 37.0 1.17 1.19 1.19 <td< th=""><th>Diameter Nominal</th><th colspan="2" rowspan="2">Outside Diameter Pipe / Tube Ø D</th><th rowspan="2">Nominal Bore Pipe</th><th colspan="5">Dimensions (^{mm}/_m)</th></td<>	Diameter Nominal	Outside Diameter Pipe / Tube Ø D		Nominal Bore Pipe	Dimensions (^{mm} / _m)				
202138363040704040201063/41.181572.761.577.761.674028301.181.181.181.181.182.901.571.6740283.71.331.01.504.82.901.571.674040323.81.501.504.82.903.391.57404040324.41.691.171.812.668.650404040401.411.812.062.203.391.9740<					Round Steel U-Bolt (Type RBD)				
29 39 40 15 157 276 157 410 26.9 1.66 3/4 1.18 40 70 40.	DN	(mm)	(IN)	(in)	A				Thread G
2026.91.063441.18407040M1251.181.181.038487640M1261.371.3311.50487640M1371.3311.501.892.991.57M10381.501.60668650M103242.41.691.17868650M10401.691.762.203.391.97M10401.691.762.203.391.97M10401.691.762.052.443.621.97M10401.901.722.652.994.291.97M12502.413.042.122.52761.97M126576.13.042.123.704.921.97M12663.693.603.704.921.97M12701.433.643.704.921.97M12701.441.661.3850M12M12701.433.643.704.921.97M12701.433.541.971.753.553.632.36701.441.661.3850M12M12701.433.541.971.753.553.632.36701.441.667.522.36	20	25	.98		30	-			M10
26.9 1.00 1.04 1.16 1.17 2.76 1.57 MID 25 1.38 1.18 1.80 1.80 2.99 1.57 MID 37 1.33 1.50 1.50 1.89 2.99 1.57 MID 32 42.4 1.69 1.74 1.89 2.03 3.39 1.97 MID 40 1.69 1.76 1.76 2.03 3.39 1.97 MID 40 1.69 1.76 1.76 2.03 3.39 1.97 MID 40 1.63 1.76 1.76 2.03 3.39 1.97 MID 40 1.63 1.67 1.76 2.03 3.02 1.97 MID 60 1.63 1.97 MID 2.05 2.44 3.62 1.97 MID 61 1.63 1.97 MID 2.55 1.97 MID MID MID MID MID MID			4.00		1.10				
301.1810381.0<		26,9	1.06	3/4	1.18				M10
100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 33.7 1.33 1 1.50 1.50 189 2.99 1.57 M0 32 33.8 1.50 1.50 46 50 3.39 1.97 M10 32 4.50 1.60 51.90 56 66 60 3.99 1.97 M10 40 1.45 1.76 2.80 52 2.92 60 M10 50 1.83 1.90 1.12 2.05 62 92 50 M10 50 57 2.80 2.44 3.62 1.97 M12 63 2.41 2.05 7.6 1.90 M12 M12 50 57 3.93 2.41 3.62 1.97 M12 63 3.6 3.6 3.6 3.6 1.6 1.6 1.97 M12 63 3.6 3.6 <td></td> <td>20</td> <td>1 1 2</td> <td></td> <td>20</td> <td>48</td> <td>76</td> <td>40</td> <td>M10</td>		20	1 1 2		20	48	76	40	M10
33.71.3311.50487.64040401.892.991.57M1032381.501.171.81568650M1042.41.691.171.81568650M104043.31.901.171.81568650M104044.51.961.97M102.203.391.97M10603.391.971.97M122.443.621.97M1050611.971.97M122.443.621.97M1250632.4122.52701.9950M12667.613.042.17282.94.291.97M12808.93.5633.704.175.431.97M12808.93.5633.704.176.431.97M121001.14.34.5744.721.861.7160M121101.975.566.732.36M161.97M12121139.75.975.975.356.732.36M1612214.44.721.861.7160M16M16139.75.975.972.366.732.36M1614019.77.568.542.36M161.57M16139.77.577.7	25	50	1.10		00				WITO
381.501.6046668650M10321.691.691.141.812.603.391.97M10404.501.691.141.812.003.391.97M10404.501.691.692.203.391.97M10404.501.691.972.203.291.97M10504.502.202.202.202.201.97M12502.4122.527610950M126076.13.042.173.233.704.291.97M12608.93.563329410613850M12608.93.5639410613850M127001.434.5744.7213617160M167116.732.366.732.36M16M16M167116.732.367.742.36M16M167116.732.367.742.36M16M167116.732.367.742.36M16M167116.732.367.742.36M16M167116.742.367.747.76M16M167116.752.367.747.76M16M167121.977.768.387.742.36M16 </td <td>33,7</td> <td>1.33</td> <td>1</td> <td>1.50</td> <td></td> <td></td> <td></td> <td>M10</td>		33,7	1.33	1	1.50				M10
33 1.50 46 2.00 3.39 1.97 M10 42.4 1.69 1.1/4 1.81 66 86 50 M10 40 44.5 1.76 1.76 2.44 3.62 92 90 M10 40 48,3 1.90 1.1/2 2.05 62 92 50 M10 50 60,3 2.41 2 2.52 76 109 50 M12 60,3 2.41 2 2.52 76 109 50 M12 61 3.64 3.61 3.70 4.29 1.97 M12 63 8.9 3.66 3 1.66 1.97 M12 64 1.61 1.93 .97 M12 M12 M12 100 1.97 3.69 3.61 1.61 1.97 M12 110 6.6 7.52 2.36 M16 M16 M16 M16 M16									
32 42.4 1.69 1.1/4 1.81 66 86 50 M10 40 44,5 1.76	20	38	1.50		46				M10
A01.761.765262925011040.044,51.761.1722.0562.443.621.97M105060,32.412.052.443.621.97M105060,32.4122.52761.0950M1266.376,13.042.1123.233.704.1250M126576,13.042.1123.233.704.921.97M128088,93.5633.704.175.431.97M12100114,34.5744.725.356.732.36M16115595.831641.9160M161255.935.831641.9160M16150193,775.595.831641.9160M16150193,777.757.668.542.36M16166,36.732.367.668.542.36M16171607.668.542.36M16M16150193,777.757.968.599.802.36M16168,36.736.937.668.542.36M16171607.668.542.36M16M16168,36.736.937.668.542.36M16171193,767.758.942.36M16M16 <td>32</td> <td>12.1</td> <td>1.60</td> <td>1 1/4</td> <td>1.91</td> <td></td> <td></td> <td></td> <td>M10</td>	32	12.1	1.60	1 1/4	1.91				M10
4044,51.7b1.7b2.052.443.621.97M1048,31.901.1/22.052.443.621.97M10502.812.8264761.0950M125060,32.4122.52761.0950M126576,13.042.1/282941.97M128088,93.5633704.125.06M12100114,34.574.01.061.385.02M12114,34.574.721361.716.0M161255.995.831641.9160M161265.995.831641.9160M16127607.522.36M16M16139,77.757.668.542.36M161596.337.668.542.36M16168,36.736.937.668.542.36M16175193,77.752.668.542.36M161768.647.522.36M16M16M161768.647.522.36M16M16M161806.736.939.869.802.36M16191191191191191191191192191191191191191191193191191<		42,4	1.09	1-1/4	1.01				IWITO
4010011/22.056292502197572.28647610950M1260.32.4122.527610950M126576,13.042.12829412550M126888,93.5633.704.175.431.97M1276109501.971.971.97M126888,93.5633.704.1250M121001383.5633.704.175.431.97M12101114,34.5744.721661366.732.36M161135.3214816419160M16M16M16126139,75.595.8316419160M16150139,75.595.8316419160M16150139,77.757.568.542.36M16175193,77.752.262.16M16M161768.642.369.60M16M16M16176138,77.752.967.568.542.361768.542.369.60M16M16M161768.542.369.60M16M161768.549.369.761.142.76M201768.649.889.		44,5	1.76		52				M10
16.3 1.50 1.172 2.03 2.44 3.62 1.97 M10 50 3.7 2.28 - 64 76 109 50 M12 60,3 2.41 2 2.52 76 109 50 M12 65 76,1 3.04 2-1/2 82 94 125 50 M12 66 76,1 3.04 2-1/2 94 106 138 50 M12 60 3.56 3.70 4.17 5.43 1.97 M12 100 4.32 - 120 136 71 60 M12 114.3 4.57 4 72 5.35 6.73 2.36 M16 120 139,7 5.99 5 5.83 164 191 60 M16 121 139,7 7.59 5.83 164 191 60 M16 120 139,7 7.59 5.83	40				_				
50 57 2.8 .4 64 76 109 50 M12 60.3 2.41 2 2.52 76 109 50 M12 65 76,1 3.04 2-1/2 3.23 3.70 4.92 1.97 M12 66 76,1 3.04 2-1/2 3.23 3.70 4.92 1.97 M12 80.9 3.56 3 94 106 138 5.0 M12 100 4.32 3.70 4.17 5.43 1.97 M12 100 4.32 3.70 4.17 6.0 M12 M12 100 5.35 6.73 2.36 M12 M12 M16 M16 M12 M16 M16<		48,3	1.90	1-1/2	2.05				M10
50 100 2.90 4.29 1.97 107 60.3 2.41 2 2.52 76 109 5.07 M12 65 76,1 3.04 2-1/2 3.23 3.70 4.29 1.97 M12 60 88,9 3.66 3 82 94 126 50 M12 80 88,9 3.66 3 4.17 5.43 1.97 M12 100 4.32 1 166 171 60 M12 114.3 4.57 4 4.72 136 171 60 M16 114.3 5.32 6.73 2.36 M16 166 171 60 M16 120 139,7 5.99 5 5.83 164 191 60 M16 159 6.36 7.76 8.54 2.36 M16 M16 166.3 6.73 2.36 8.54 2.36 M16 M16 </td <td></td> <td>F7</td> <td>0.00</td> <td></td> <td>64</td> <td></td> <td></td> <td></td> <td>1410</td>		F7	0.00		64				1410
60.32.4122.52761095.901.971126576.13.042-1/23.233.704.291.971028088.93.563941061385.01121003.563.704.175.431.97102100114.34.3211265.556.732.36112100114.34.5741265.556.732.36116114.34.5744.72166171601161205.356.732.36116191601161215.321164191601161161235.32116419160116116130,75.965.861647.522.36116139,75.977.665.866.462.361161506.367.668.542.36116116151139,77.752.768.568.542.36151139,77.752.768.569.3011.142.76151139,71.11011.3913.152.7611.342.7615113.641.9711.3615.162.7611.3617.132.7615113.641.991.991.1013.8615.162.7611.3615113.991	50	57	2.28		64	2.99	4.29	1.97	IVI I Z
65 76,1 3.04 $2-1/2$ 82 94 125 50 80 $86,9$ 3.66 3 94 106 138 50 $M12$ 100 $114,3$ 4.57 4 120 136 171 60 $M12$ 100 $114,3$ 4.57 4 4.72 5.35 6.73 2.36 $M12$ $114,3$ 4.57 4 4.72 5.35 6.73 2.36 $M16$ 125 59 5.83 164 191 60 $M16$ 126 159 5.63 5.83 164 191 60 $M16$ 150 159 5 5.83 164 191 60 $M16$ 150 $139,7$ 7.5 202 176 8.54 2.36 $M16$ 150 $193,7$ 7.5 206 8.68 9.30 2.3	00	60.3	2.41	2	2.52				M12
bb /b,1 3.44 2-1/2 3.23 3.70 4.92 1.97 M12 80 86,9 3.56 3 3.70 4.17 5.43 1.97 M12 100 18 4.32 120 136 171 60 M12 100 14,3 4.57 4 4.72 5.35 6.73 2.36 M16 114,3 4.57 4 4.72 5.35 6.73 2.36 M16 125 133 5.32 4 4.72 5.35 6.73 2.36 M16 125 139,7 5.59 5 5.83 164 191 60 M16 150 193,7 7.75 7.66 8.54 2.36 M16 175 193,7 7.75 202 218 249 60 M16 200 216 8.64 228 203 70 M20 210 1.1.14 2.76		, -		_					
80 88,9 3.66 3.66 94 106 138 50 112 100 138 4.32 10 136 171 60 112 100 114,3 4.32 4 120 136 171 60 114,3 4.57 4 4.72 136 171 60 116 114,3 4.57 4 4.72 136 171 60 116 120 139,7 5.92 5.9 5.83 164 191 60 116 139,7 5.99 5 5.83 164 191 60 116 150 168,3 6.73 2.36 116 116 116 116 150 193,7 7.56 8.54 2.36 116 116 116 150 193,7 7.75 10 222 128 249 60 116 175 193,7 7.75 202 218 249 60 116 200 191 8.64 2.36 1114 2.76 116 219,1 8.76 8.98 248 283 70 116 219,1 10.68<	65	76,1	3.04	2-1/2					M12
80 86,9 3.50 3 3.70 4.17 5.43 1.97 M12 100 136 171 60 M12 100 14,3 4.57 4 72 5.55 6.73 2.36 M16 114,3 4.57 4 4.72 136 171 60 M16 125 133 5.32 148 164 191 60 M16 139,7 5.59 5 5.83 164 191 60 M16 150 199,7 5.59 5 5.83 164 191 60 M16 150 193,7 7.75 5 5.83 192 217 60 M16 175 193,7 7.75 202 218 249 60 M16 200 193,7 7.75 202 218 248 283 70 M20 201 193,7 1.0.68 29 76									
100 103 4.32 120 5.35 6.73 2.36 M12 114,3 4.57 4 4.72 5.35 6.73 2.36 M16 138 7.1 6.03 2.36 M16 5.35 6.73 2.36 M16 139,7 5.59 5.81 164 191 60 M16 139,7 5.59 5.83 164 191 60 M16 150 6.36 7.56 8.54 2.36 M16 150 168,3 6.73 6.93 192 217 60 M16 150 193,7 7.75 8.93 218 249 60.0 M16 175 193,7 7.75 7.76 8.58 9.80 2.366 M16 200 216 8.64 2.36 M16 2.76 M20 201 8.64 2.36 13.33 3.34 70 M20 219.1 8	80	88,9	3.56	3					M12
$ \begin{array}{ c c c c c } \hline 100 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$		108	1 32		120				M12
114,3 4.57 4 4.72 136 171 60 M16 125 133 5.32 4 4.72 5.35 6.73 2.36 M16 139,7 5.99 5.83 164 191 60 M16 139,7 5.99 5 5.83 164 171 60 M16 139,7 5.99 5 5.83 164 171 60 M16 150 6.36 7.52 2.36 M16 M16 </td <td>100</td> <td>100</td> <td>4.02</td> <td></td> <td>120</td> <td></td> <td></td> <td></td> <td>IVI I Z</td>	100	100	4.02		120				IVI I Z
133 5.32 148 164 191 60 16 139,7 5.59 5.83 6164 191 60 10 139,7 5.59 5.83 6164 7.52 2.36 16 139,7 5.59 5.83 6164 7.52 2.36 16 159 6.36 7.56 8.54 2.36 16 16 19 60 16 159 6.73 6.93 192 217 60 16		114,3	4.57	4	4.72				M16
$ \begin{array}{ c c c c c } \hline 133 & 5.32 & 1 & 143 & 6.46 & 7.52 & 2.36 & 10 & 10 & 10 & 10 & 10 & 10 & 10 & 1$									
123 139,7 5.9 5.83 164 191 6.0 164 191 6.0 164 191 6.0 164 175 2.36 164 191 6.0 166 166 7.52 2.36 166 1	105	133	5.32		148				M16
$ \begin{array}{ c c c c } \hline c c c c c } \hline c c c c c } \hline c c c c c c c } \hline c c c c c c c } \hline c c c c c c c c } \hline c c c c c c c c c } \hline c c c c c c c c c c c c } \hline c c c c c c c c c c c c c c c c } \hline c c c c c c c c c c c c c c c c c c $	125	100 7	5 50	5	E 00				MIC
159 5.36 176 7.56 8.54 2.36 M16 168.3 6.73 6 6.93 192 217 60 M16 175 193,7 7.75 202 218 249 60 M16 175 193,7 7.75 202 218 249 60 M16 200 219,1 8.64 2.36 M2 248 283 70 M20 200 219,1 8.64 8.64 8.98 9.76 11.14 2.76 M20 200 219,1 8.76 8 8.98 9.76 11.14 2.76 M20 250 273 10.68 11.10 303 334 70 M20 300 323,9 12.96 11.10 11.89 13.15 2.76 M20 301 55.6 14.22 12 13.07 352 385 70 M20 303 35.6 14.2		139,7	0.09	5	0.05				IVITO
$ \begin{array}{ c c c c c } \hline 150 & 160 & 160 & 17.56 & 8.54 & 2.36 \\ \hline 192 & 217 & 60 \\ \hline 7.66 & 8.54 & 2.36 & \\ \hline 192 & 217 & 60 \\ \hline 7.66 & 8.54 & 2.36 & \\ \hline 112 & 217 & 60 \\ \hline 7.66 & 8.54 & 2.36 & \\ \hline 117 & 193,7 & 7.75 & \\ \hline 193,7 & 7.75 & 202 & 218 & 249 & 60 & \\ \hline 7.96 & 8.58 & 9.80 & 2.36 & \\ \hline 7.96 & 8.58 & 9.80 & 2.36 & \\ \hline 7.96 & 8.58 & 9.80 & 2.36 & \\ \hline 7.96 & 8.58 & 9.80 & 2.36 & \\ \hline 7.96 & 8.58 & 9.80 & 2.36 & \\ \hline 11.14 & 2.76 & \\ \hline 11.14 & 2.$		159	6.36		176				M16
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \hline \beg$	150								
175 193,7 7.75 202 218 249 60 $M16$ 200 216 8.64 28 288 283 70 $M20$ 200 $219,1$ 8.64 28 288 283 70 $M20$ $219,1$ 8.76 8.98 8.98 248 283 70 $M20$ 250 217 0.68 8.98 282 303 334 70 $M20$ 250 10.68 1.10 276 11.14 2.76 $M20$ 250 10.92 10.11 11.93 31.15 2.76 $M20$ 303 334 70 $M20$ 31.15 2.76 $M20$ 300 32.9 12.72 10.7 31.67 51.6 2.76 $M20$ 303 32.9 12.96 12.97 352 385 70 $M24$ 350		168,3	6.73	6	6.93				M16
$ \begin{array}{c c c c c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c c } \hline \begin{tabular}{ c c } \hline \hline \begin{tabular}{ c c } \hline \begin{tabular}{ $	475	400 7	7 75		202				1440
$ \begin{array}{c c c c c c c } \hline 216 & 8.64 & 6 & 228 & 9.76 & 11.14 & 2.76 & M20 \\ \hline 219,1 & 8.76 & 8.08 & 8.98 & 8.98 & 248 & 283 & 70 & & & & & & & & & & & & & & & & & $	1/5	193,7	1.75						M16
$ \begin{array}{c c c c c c c } 200 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$		216	8 64		228				M20
$ \begin{array}{ c c c c c c } \hline \begin{tabular}{ c c c } \hline $219,1 & $8,76 & $8,76 & $8,98 & $9,76 & $11.14 & $2,76 & $M20$ \\ \hline \begin{tabular}{ c c c c } \hline $276 & $M20$ \\ \hline \end{tabular} ta$	200		0.01						11120
$ \begin{array}{c c c c c c c } & 267 & 10.68 & 10.68 & 282 & 303 & 334 & 70 & & & & & & & & & & & & & & & & & $		219,1	8.76	8	8.98				M20
$ \begin{array}{c c c c c c c c } \hline 257 & 10.58 & 1 & 252 & 11.93 & 13.15 & 2.76 & M20 \\ \hline 11.93 & 13.15 & 2.76 & M20 \\ \hline 273 & 10.92 & 10 & 11.10 & 302 & 334 & 70 & M20 \\ \hline 11.89 & 13.15 & 2.76 & M20 \\ \hline 318 & 12.72 & 332 & 352 & 385 & 70 & M20 \\ \hline 323.9 & 12.96 & 12 & 13.07 & 352 & 385 & 70 & M20 \\ \hline 323.9 & 12.96 & 12 & 13.07 & 352 & 385 & 70 & M20 \\ \hline 355.6 & 14.22 & 14 & 378 & 402 & 435 & 70 & M20 \\ \hline 368 & 14.72 & 14 & 378 & 402 & 435 & 70 & M20 \\ \hline 368 & 14.72 & 14.88 & 15.13 & 2.76 & M24 \\ \hline 368 & 14.72 & 14.88 & 15.83 & 17.13 & 2.76 & M24 \\ \hline 368 & 14.72 & 14.88 & 452 & 487 & 70 & M24 \\ \hline 368 & 16.26 & 16 & 428 & 452 & 487 & 70 & M24 \\ \hline 368 & 16.26 & 16 & 428 & 452 & 487 & 70 & M24 \\ \hline 368 & 16.26 & 16 & 428 & 452 & 487 & 70 & M24 \\ \hline 368 & 16.26 & 16 & 428 & 452 & 487 & 70 & M24 \\ \hline 368 & 16.26 & 16 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.26 & 16 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.26 & 16 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.26 & 16 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.26 & 16 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.26 & 16 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.26 & 16 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.26 & 16 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.26 & 16 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.26 & 16 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.76 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.76 & 16.85 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.76 & 16.85 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.76 & 16.85 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.76 & 16.85 & 16.85 & 17.13 & 2.76 & M24 \\ \hline 368 & 16.76 & 16.85 & 16.85 & 16.85 & 17.13 & 19.17 & 2.76 & M24 \\ \hline 368 & 16.76 & 16.85 & 16.8$				-					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	050	267	10.68		282				M20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	200	273	10.92	10	11 10				M20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		210	10.02	10					INIEG
$ \begin{array}{c c c c c c c c c c } \hline 300 & & & & & & & & & & & & & & & & & &$		318	12.72		332	10.00	1 - 1 -		M20
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	300								1107
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		323,9	12.96	12	13.07				M20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		355.6	14 22	14	270	402		70	M24
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	350	000,0	17.22		010				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		368	14.72		14.88				M24
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	400				-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		406,4	16.26	16	428				M24
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	400	/10	16.76		16.95	452	487		M24
500 500 20.32 20 500 21.81 23.19 2.76 M24 500 521 20.84 20.87 554 589 70 M24		413	10.70		10.00				IVIZ-4
500 21.81 23.19 2.76 554 589 70 M24		508	20.32	20	530				M24
	500				-				
		521	20.84		20.87	21.81	23.19	2.76	M24

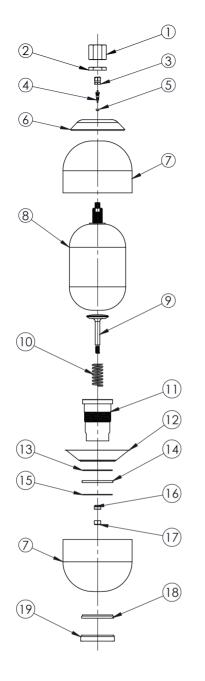
Round Steel U-Bolt (type RBD)

Operating and Maintenance Instructions

Installation

- The accumulator in a hydraulic circuit should be placed as near as practical to the source of shock or potential energy requirement.
- All accumulators will be shipped from the factory with a nominal pre-charge pressure. This is done to seat the accumulator poppet valve on the hydraulic port and too keep the accumulator bladder inflated at all times.
- Keep the accumulator hydraulic port covered until you are ready to make the hydraulic connection. This is done to keep out any foreign or contaminating material from the accumulator.
- Normally an accumulator should be installed in a vertical position with the oil port connection facing down. If required, it may be installed no more than within 25° of vertical with the hydraulic port facing downward. Bladder type accumulators not mounted vertical have an increased risk of the bladder floating, which traps usable fluid inside. The bladder can be pinched by the poppet valve closing, which may rupture the bladder. A non-vertical accumulator position requires more care when draining the fluid from the accumulator.
- When installing an accumulator and using "U" bolt type clamps, care should be exercised so as not to distort the accumulator with excessive force.
- Welding hangers to the accumulator is not recommended. Mounting brackets, bases and rubber rings are available from STAUFF, (See accumulator accessories pages 16-18).
- The hydraulic fluid used must be kept free of foreign matter to prevent damaging the accumulator. For maximum seal and accumulator life, the fluid should be filtered to 10 microns or better.
- It is not advisable to change the hydraulic fluid from that for which the accumulator was
 originally purchased for, without first checking its compatibility with the accumulator seals and
 bladder materials.

Pre-Charging Procedure General Information


- The condition of the accumulator is primarily determined by periodically checking the precharge pressure.
- Hydraulic accumulators are pressure vessels and only qualified personnel should perform any maintenance.
- Drain all fluid completely from accumulator before performing any maintenance.
- The most accurate pre-charge readings can only be taken when the fluid pressure is at "0 psig".
- Always observe the maximum working pressure and operating temperature ranges of the accumulator.
- CAUTION DO NOT weld, braze or machine directly on the accumulator shell.
- CAUTION DO NOT use automotive type valve cores with high pressure accumulator gas valves.
- CAUTION DO NOT use the gas valve or the fluid port assembly as lifting points.
- CAUTION DO NOT use oxygen or air for precharging the accumulator due to risk of explosion, USE only dry 99.99% pure nitrogen for charging accumulators.

DO NOT USE OXYGEN FOR PRE-CHARGING THE ACCUMULATOR!

Parts Breakdown

3000 PSI Bottom Repairable, 1 Qt.

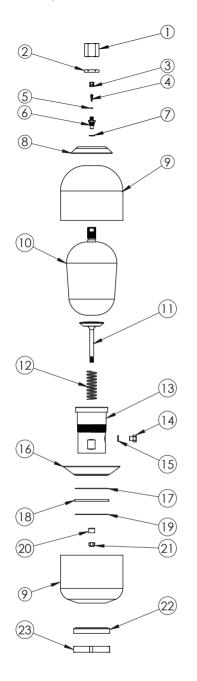
Item	Description
1	Protective Cap
2	Bladder Nut
3	Gas Valve Cap
4	Gas Valve Core
5	Gas Valve core Seal
6	Name Plate
7	Shell
8	Bladder
9	Poppet Valve
10	Poppet Spring
11	Oil Port
12	Anti Extrusion Ring
13	Metal Back up Ring
14	O-Ring
15	Back up Ring
16	Poppet Piston
17	Poppet Lock Nut
18	FlangeWasher
19	Locking Ring

Please see page 10 for replacement bladder kit part numbers.

Replacement bladder kits includes items (1 ea.): 3, 4, 5, 8, 13, 14, 15

Replacement Gas Valve Core

Replacement gas valve for the 3000 PSI 1 Qt accumulators


Gas Valve Core Part Number STDA-X-VC

Includes items (1 ea.): 3, 4, 5

Parts Breakdown

3000 PSI Bottom Repairable, 1 to 15 Gallon, Standard and High Flow

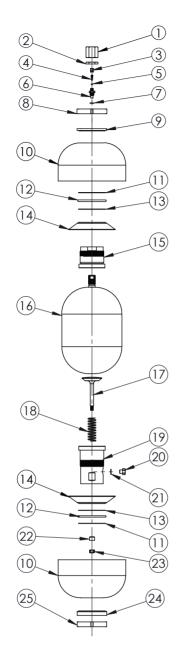
Item	Description
1	Protective Cap
2	Bladder Nut
3	Gas Valve Cap
4	Gas Valve Core
5	Gas Valve core Seal
6	Gas Valve Body
7	Gas Valve O'Ring
8	Name Plate
9	Shell
10	Bladder
11	Poppet Valve
12	Poppet Spring
13	Oil Port
14	Bleed Plug
15	Bleed Plug Seal
16	Anti Extrusion Ring
17	Metal Back up Ring
18	O-Ring
19	Back up Ring
20	Poppet Piston
21	Poppet Lock Nut
22	FlangeWasher
23	Locking Ring

Please see page 10 for replacement bladder kit part numbers.

Replacement bladder kits includes items (1 ea.): 3, 4, 5, 6, 7, 10, 17, 18, 19

Replacement Gas Valve

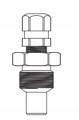
Replacement gas valve for the 3000 PSI accumulators 1 gallon to 15 Gallon


Cored Valve Cartridge Part Number STA-AS-GV-1-15-P3

Includes items (1 ea.): 3, 4, 5, 6, 7

Parts Breakdown

3000 PSI Top Repairable, 2.5 to 15 Gallon



Item	Description
1	Protective Cap
2	Bladder Nut
3	Gas Valve Cap
4	Gas Valve Core
5	Gas Valve core Seal
6	Gas Valve Body
7	Gas Valve O'Ring
8	Top Locking Ring
9	Top Flange Washer
10	Shell
11	Back up Ring
12	O-Ring
13	Metal Back up Ring
14	Anti Extrusion Ring
15	Top Adapter
16	Bladder
17	Poppet Valve
18	Poppet Spring
19	Oil Port
20	Bleed Plug
21	Bleed Plug Seal
22	Poppet Piston
23	Poppet Lock Nut
24	Flange Washer
25	Locking Ring

Please see page 10 for replacement bladder kit part numbers.

Replacement bladder kits includes items (1 ea.): 3, 4, 5, 6, 7, and items (2 ea.) 11, 12, 13

Replacement Gas Valve

Replacement gas valve for the 3000 PSI accumulators 1 gallon to 15 Gallon

Cored Valve Cartridge Part Number STA-AS-GV-1-15-P3

Includes items (1 ea.): 3, 4, 5, 6, 7

Bladder Accumulators

Pre-Charging

3000 PSI Bladder Accumulators

Figure 1.

Figure 2.

1. Isolate the accumulator from the system and make sure hydraulic fluid pressure is zero.

2. Remove the gas valve protection guard and then the gas valve cap from the accumulator (for top repairable accumulators connect a gas valve extension unit similar to Stauff Part # STA-VLV-EXT-1 at this time).

3. To charge the accumulator, use a charging hose and gauge assembly similar to Stauff Charging Kit # STBA-CK-B/T-P3 rated for 3,000 psig minimum (higher pressure kits are available).

4. Before using the charging assembly (Figure 1.) make sure that valve A is completely open (counter-clockwise), ensure that bleed valve B (Figure 1.) is completely closed (clockwise) and that the non-return valve C (Figure 1.) is capped.

5. Connect the charging unit to the gas fill valve or gas valve extension unit (for top repairable) on the accumulator by means of knurled cap D (Figure 1.).

6. Make sure the valve on the nitrogen bottle is completely closed, then fit the nitrogen gas valve adapter/hose assembly (included in Stauff charging kit # STBA-CK-B/T-P3) onto the nitrogen bottle (Figure 2.).

7. Connect the other end of gas hose to the non-return valve **C** (Figure 1.), after taking off the cap.

8. Turn valve A (Figure 1.) clockwise until it stops (Do not over Torque).

9. **SLOWLY** open the valve on nitrogen bottle (Figure 2.) and allow the nitrogen gas to flow into the accumulator. The pressure gauge should begin to register pressure.

10. Once the desired gas pre-charge pressure has been reached, close valve on nitrogen bottle (Figure 2.). The pressure should be slightly higher than the desired pre-charge pressure.

11. Open valve **A** (Figure 1.) (Fully counter-clockwise) to bleed the trapped pressure in the gas line to zero by means of bleed valve **B** (Figure 1.), open valve **B** (turn counterclockwise) until gauge reads 0 psig.

12. Remove hose from non-return valve C (Figure 1.) and replace cap.

13. Close the bleed valve **B** (Figure 1.) and wait a few minutes for pressure to stabilize.

14. Screw valve **A** (Figure 1.) clockwise until pressure can be read on gauge. This should be slightly higher than the required pressure.

15. Adjust to desired pressure by means of bleed valve \mathbf{B} (Figure 1.), then remove charging unit from the accumulator gas valve and from the nitrogen bottle (after making sure that the nitrogen bottle valve is completely closed.

16. If necessary remove the gas valve extension unit (top repairable accumulators only), then reinstall the gas valve cap and protective guard cap on the accumulator. The accumulator is now ready for use.

NOTE: Allow the accumulator to rest approximately 10-15 minutes after gas precharging. This will allow gas temperature to adjust and equalize. Recheck gas pressure and adjust if necessary. Check accumulator gas valve for any leaks with soapy water. Always wear safely glasses.

STAUFF

Checking Pre-Charge Pressure

3000 PSI Bladder Accumulators

General Information

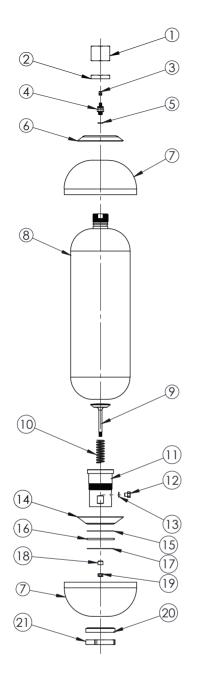
The condition of the accumulator is primarily determined by periodic checking of pre-charge pressure. Only qualified personnel should perform any maintenance on accumulators. Nitrogen gas pre-charge pressure should be checked at least once during the first week of operation to assure that no leak has developed. The pre-charge pressure and ambient temperature should be recorded at installation. If there is no loss of gas pre-charge pressure, it should be rechecked in approximately 4 months. Thereafter, it should be checked annually. Check pre-charge if the system is acting sluggishly. If pre-charge is low, check the gas valve for leakage and recharge.

Pre-Charge Checking Procedure for 3000 PSI Bladder Accumulators.

1. Use appropriate valving in the hydraulic system, to discharge all hydraulic fluid from accumulator.

2. To check or adjust pre-charge pressure, **HYDRAULIC PRESSURE MUST BE REDUCED TO 0 PSIG**. Pre-charge pressure should be checked periodically. Charging and checking should be done with an accumulator charge assembly kit similar to Stauff Part # STBA-CK-B/T-P3.

3. Follow pre-charging instructions for 3000 psi bladder accumulators - instructions #4 through #15.


4. If necessary remove the gas valve extension unit (top repairable accumulators only), then reinstall the gas valve cap and protective guard cap on the accumulator. The accumulator is now ready for use.

NOTE: Allow accumulator to rest approximately 10-15 minutes after gas pre-charging. This will allow gas temperature to adjust and equalize. Recheck gas pressure and adjust if necessary. Check accumulator gas valve for any leaks with soapy water. Always wear safely glasses.

Parts Breakdown

5000 PSI Bottom Repairable, 2.5 to 15 Gallon,

Item	Description
1	Protective Cap
2	Bladder Nut
3	Gas Valve Cap
4	Gas Valve
5	Gas Valve O'Ring
6	Name Plate
7	Shell
8	Bladder
9	Poppet Valve
10	Poppet Spring
11	Oil Port
12	Bleed Plug
13	Bleed Plug Seal
14	Anti Extrusion Ring
15	Metal Back up Ring
16	O-Ring
17	Back up Ring
18	Poppet Piston
19	Poppet Lock Nut
20	FlangeWasher
21	Locking Ring

Please see page 10 for replacement bladder kit part numbers.

Replacement bladder kits includes items (1 ea.): 3, 4, 5, 8, 15, 16, 17

Replacement Gas Valve

Replacement gas valve for the 5000 PSI accumulators 2.5 gallon to 15 Gallon

Cored Valve Cartridge Part Number STA-AS-GV-1-15-P5

Includes items (1 ea.): 3, 4, 5

Pre-Charging

5000 PSI Bottom Repairable Bladder Accumulators

Pre-Charging Procedure for 5000 PSI Bottom Repairable Bladder Accumulators.

1. Isolate the accumulator from the system and make sure hydraulic fluid pressure is zero.

2. Remove the gas valve protection guard and then the gas valve cap from the accumulator.

3. To charge the accumulator, use a charging hose and gauge assembly similar to Stauff Charging Kit # STBA-CK-B-P5, rated for 5,000 psig minimum.

4. Before using the charging assembly (Figure 1.) make sure that valve **A** is completely open (counter-clockwise), that bleed valve **B** (Figure 1.) is completely closed (clockwise) and that the non-return valve **C** (Figure 1.) is capped.

5. Connect the charging unit to the 5000 psi gas fill valve on the accumulator by means of knurled cap \bm{D} (Figure 1.).

6. Open the gas valve adapter on the accumulator (referring to the 5000 PSI gas valve STA-AS-GV-1-15-P5) by securing the bottom hex on the gas valve with one (1) wrench while unscrewing the top hex on the gas valve (counter clockwise) with a second (2) wrench. This will open the poppet inside the gas valve. Note, four (4) turns should fully open the poppet.

7. Make sure the valve on the nitrogen bottle is completely closed, then fit the 5000 PSI nitrogen gas valve adapter/hose assembly (included in Stauff Charging Kit # STBA-CK-B-P5) onto the nitrogen bottle (Figure 2.).

8. Connect the other end of the gas hose to the non-return valve C (Figure 1.), after taking off its cap.

9. Turn valve A (Figure 1.) clockwise until it stops (Do not over Torque).

10. **SLOWLY** open the valve on nitrogen bottle (Figure 2.) and allow the nitrogen gas to flow to the accumulator. The pressure gauge should begin to register pressure.

11. Once the desired gas pre-charge pressure has been reached, close valve on nitrogen bottle (Figure 2.).

12. Open valve **A** (Figure 1.) (Fully counter-clockwise) and bleed the trapped pressure in the gas line to zero by means of bleed valve **B** (Figure 1.), open valve **B** (turn counterclockwise) until gauge reads 0 psig.

13. Remove hose from non-return valve C (Figure 1.) and replace cap.

14. Close the bleed valve B (Figure 1.) and wait a few minutes for pressure to stabilize.

15. Screw valve **A** (Figure 1.) clockwise until pressure can be read on gauge. This should be slightly higher than the required pressure.

16. Adjust to desired pressure by means of bleed valve **B** (Figure 1.), then, with a wrench screw in the top hex on the accumulator gas valve until tight, then remove charging unit from the accumulator gas valve and from the nitrogen bottle (after making sure that the nitrogen bottle valve is completely closed.

17. Reinstall the gas valve cap and protective guard cap on the accumulator. The accumulator is now ready for use.

NOTE: Allow the accumulator to rest approximately 10-15 minutes after gas pre-charging. This will allow gas temperature to adjust and equalize. Recheck gas pressure and adjust if necessary. Check accumulator gas valve for any leaks with soapy water. Always wear safely glasses.

Checking Pre-Charge Pressure

5000 PSI Bladder Accumulators

General Information

The condition of the accumulator is primarily determined by periodic checking of pre-charge pressure. Only qualified personnel should perform any maintenance on accumulators. Nitrogen gas pre-charge pressure should be checked at least once during the first week of operation to assure that no leak has developed. The pre-charge pressure and ambient temperature should berecorded at installation. If there is no loss of gas pre-charge pressure, it should be rechecked in approximately 4 months. Thereafter, it should be checked annually. Check pre-charge if the system is acting sluggishly. If pre-charge is low, check the gas valve for leakage and recharge.

Pre-charge Checking Procedure for 5000 PSI Bladder Accumulators

1. Use appropriate valving in the hydraulic system, to discharge all hydraulic fluid from accumulator.

2. To check or adjust pre-charge pressure, **HYDRAULIC PRESSURE MUST BE REDUCED TO 0 PSIG.** Pre-charge pressure should be checked periodically. Charging and checking should be done with an accumulator charge assembly kit similar to Stauff Part # STBA-CK-B-P5.

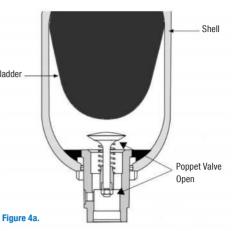
3. Follow pre-charging instructions for 5000 psi bottom repairable bladder accumulators - instructions #4 through #16.

4. Reinstall the gas valve cap and protective guard cap on the accumulator. The accumulator is now ready for use.

NOTE: Allow accumulator to rest approximately 10-15 minutes after gas pre-charging. This will allow gas temperature to adjust and equalize. Recheck gas pressure and adjust if necessary. Check accumulator gas valve for any leaks with soapy water. Always wear safely glasses.

Disassembly Procedures for Bladder Accumulators

Bladder Accumulators are Pressure Vessels and are fundamentally hazardous because they store energy in the form of compressed Gas and pressurized Fluid. Only people who have had the appropriate training with regard to disassembly of Accumulators should attempt to dismantle an Accumulator.


Note: Prior to disassembly of the Accumulator please ensure the following are checked first.

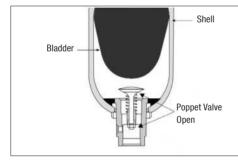
A. The pre-charge pressure is released from the Accumulator and there is no gas pressure left in the Accumulator. Use an appropriate pre-charging head connected to the Gas Valve and check to see that the gauge reads zero pressure. Open up the bleed valve on the charging head and make sure no gas can be heard coming from the Accumulator. (See Stauff Pre-Charging Instructions Pgs. Bladder 20 - 28).


B. Check to make sure that the poppet valve located in the Fluid Port is fully in the open position. (see Figure 4a.)

Note - in cases where the poppet valve is still in the closed position and the stem is extended (out position), do not attempt to service the vessel and contact the manufacturer.

C. Where possible check to make sure that any potential system fluid still in the Accumulator is not dangerous or can cause harm if it comes into contact with human skin, especially phosphate ester fluids. If necessary wear protective clothing and safety glasses.

Disassembly Instructions


1. Remove the Protection Cap.

2. Remove the Gas Valve Assembly Cap.

3. Attach STAUFF pre-charging head and release any precharge from the Accumulator.

4. Ensure that the poppet valve is not closed. The stem should be fully in and free to move.

5. Remove the Gas Valve Assembly or Gas Valve Core.

6. Remove the Bladder Lock Nut and Name Plate.

Disassembly Intructions

7. Remove the Bleed Valve on the Fluid Port.

8. Remove the Fluid port Lock Nut with an appropriate "C" spanner along with the flanged washer.

9. Remove the Nylon Back-up Washer and the metal back-up ring along with the O-Ring.

10c. The Fluid Port can then be removed from the shell.

10a. Remove the Fluid Port Assy by first pushing the Fluid Port back into the inside of the shell.

10b. From inside the shell slide the Anti extrusion ring off the Fluid Port body and remove from the shell.

12. Inspect the Bladder.

In cases where there are signs of damage, wear or swelling then the Bladder should be replaced.

Refer to page 31 and 32. outlining potential Damages, Causes and Response.

11. Remove as much air as possible from the Bladder, then remove the bladder from the Shell - do not use any sharp objects that could damage the bladder.

Trouble Shooting Guide

Type of Damage	Cause	Response	
External Leakage from Gas Valve	l		
Any leakage from the gas valve if not detected will eventually lead to bladder failure.	Any loss of Nitrogen from the gas valve will cause the compression ratio on the bladder to be exceeded and eventually cause the bladder to fail.	Always ensure that after pre-charging, or du- ring service intervals where the pre-charge is checked, that the gas valve is inspected for leaks.	
Severe leakage from the Gas Valve	Gas valve assembly or valve core damaged. In-correct charge valve used – gas valve has been tampered with.	Replace Gas Valve. Ensure the correct charging equipment is used.	
External Leakage from Fluid Port			
Leaking Oil between Fluid Port body and Accumulator Shell.	Damaged O-Ring caused during assembly or 'O' ring has become hard due to high oil temperatures.	Replace Fluid Port O-Ring. Check Assembly Methods Check oil system temperature.	0'Ring
Internal Leakage from Bladder			
Upon pre-charge and less than 29 PSI (2 bar) the Bladder fails leaving a star shape burst pattern at the bottom of the Bladder.	The Accumulator was not lubricated properly and / or pre-charged too quickly. Excessive stretching of the bladder or the lower region has been caught in the poppet valve.	Replace Bladder. Ensure that the Shell and Bladder are well lubricated with system fluid. Pre-charge very slowly until the poppet valve is closed.	A Market
Bladder has abrasion lines on 1, 2 or 3 sides. There is a failure along one of marked lines.	The compression ratio between Max. and Min. pressure is too high. The pre-charge pressure is too low or has not been checked for a long time. Gas permeation is an issue.	Replace Bladder. Ensure that the compression ratio is below 4:1 – Check pre-charge pressure more frequently. Replace with Bladder that has a higher acro- lynitrile percentage.	
Bladder has failed at the bonded seam – Vulcanizing failure.	Bladder has rubbed on the inside of the shell due to the compression ratio too high. Manufacturing or Material fault.	Replace Bladder. Ensure that the compression ratio is below 4:1 Check pre-charge pressure more frequently.	
Bladder has Circular cut mark on the base.	Pre-charge pressure is too high.	Lower Pre-charge pressure.	
Bladder has a pin hole around the tip of the Bladder.	Loss of pre-charge pressure, leaking gas valve, the pre-charge pressure has not been checked.	Check / replace gas valve Check pre-charge more frequently.	

Trouble Shooting Guide

Type of Damage	Cause	Response	
Internal Leakage from Bladder	1		
Bladder has hardened and is carbonized.	Accumulator cycle time is very quick along with a very high compression ratio, causing high gas temperature. Oil temperature is too high	Replace Bladder, Check Accumulator cycle time and reduce or increase size of Accumulator. Ensure oil temperature is lowered to the correct level.	
Bladder is swollen.	Incorrect bladder material. System fluid is not compatible with the blad- der material.	Check compatibility of the bladder material with the fluid used. Consult Accumulator manufacturer.	
Anti- Extrusion Ring			
Anti-Extrusion Ring has split into two halves after disassembly.	Normal wear and tear.	Re-place Anti-Extrusion Ring.	
Fluid Port Assembly			
Worn Poppet Valve. Excessive side movement in the poppet valve or poppet valve is sticking when pushed down.	Normal Wear. Poppet valve is operated during each cycle. The pre-charge is too close or higher than the minimum working pressure. The flow rate from the accumulator is above the recommend flow rate for that model.	Replace Fluid Port Assy. Ensure pre-charge pressure is lowered to <90% of minimum working pressure. Decrease flow rate, use a larger Accumulator with bigger port. Increase the number of Accumulators used to reduce the output flow.	
Poppet Valve is broken. Very High Cycling application.	Poppet valve is operated during each cycle. The pre-charge is too close or higher than the minimum working pressure. The flow rate from the accumulator is above the recommend flow rate for that model.	Replace Fluid Port Assy. Ensure pre-charge pressure is lowered to <90% of minimum working pressure. Decrease flow rate, use a larger Accumulator with bigger port. Increase the number of Accumulators used to reduce the output flow.	

STAUFF[®]

Assembly Procedures

Assembly Procedures for Bladder Accumulators

Note: Prior to assembly of the Accumulator please ensure the following are checked first.

A. Always ensure that the Assembly is done in a clean area.

B. Make sure that the replacement Bladder is designed and sized for Accumulator being repaired.

C. Ensure that any system fluid still inside the Accumulator is not dangerous to the human skin. (Wear protective clothing if necessary).

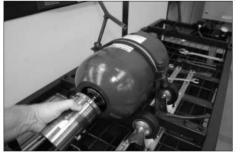
D. Make sure there is no internal or external corrosion on the Accumulator or any evidence of damage to the shell prior to assembling the Accumulator.

E. It is the responsibility of the person doing the repair to ensure that the Accumulator complies with any relevant government requirements, such as Design and Inspection criteria.

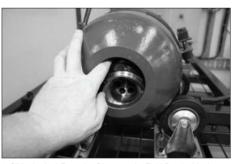
If there is any doubt with regard to D. and E. above, the Accumulator should not be reassembled and preferably discarded.

Assembly Instructions

1. Ensure that the inside of the Shell is well lubricated with System Fluid.


Note: In some cases Standard Hydraulic Fluid may not be compatible with the System Fluid therefore an alternative fluid may need to be used.

2. Take Bladder and remove Gas Valve. Remove all air from the Bladder and fold neatly. Position Bladder inside Accumulator so that the Bladder Stem protrudes through the small opening at the other end of the Shell.


3. Fit Name Plate and Locknut to Bladder Stem.

4. Place Fluid Port inside the Shell Poppet Valve facing inwards.

5. Place Anti-Extrusion Ring inside the Shell and make sure the metal ring is facing you.

6. Slide the Anti-Extrusion Ring over the Fluid Port inside the Accumulator Shell.

Assembly Intructions

7. Grip the Fluid Port Body from inside the Shell and pull out as far as possible.

8. Holding the Fluid Port Body firmly install the metal back-up ring and the O-Ring. Ensure no sharp tools are used and that the O-Ring is inserted evenly around the Fluid Port Body.

9. Ensuring the Fluid Port Body does not get dislodged - insert the Nylon Back-Up washer so that the rounded face on the washer faces the 0-Ring.


10. Attach first the Flanged washer and then the Lock-Nut. Ensure the Lock-Nut is tightened using an appropriate spanner.

11. Fit the Bleed Plug or Test Point (if fitted) and tighten.

12. Fit the Gas Valve Assembly to the Bladder Stem and tighten to the correct setting. Ensure that when tightened the Bladder stem does not rotate.

13. Fit the Gas Valve Assembly Cap.

14. Fit the Gas Valve Protection Cap.

Note: With regard to pre-charging the Accumulator with Nitrogen, please refer to the STAUFF Pre-Charging Instructions.

Sizing Data & Application

Sizing Accumulators

Sizing Accumulators

In selecting the proper accumulator size V1 (size of accumulator in cubic inches) when Vw (volume of fluid to be discharged from accumulator) is known.

$V1 = (\underline{Vw})(\underline{E})$

E in the above equation adjusts the equation due to the accumulator efficiency versus the gas pre-charge pressure. Use the following constants.

For Supplementing Pump

E = 1.24 for bladder accumulators.

For Auxiliary Power Source (No Pump)

E = 1.60 for bladder accumulators.

In the above equation the discharge coefficient "f" adjusts the equation for the change in the gas temperature due to heat gains and losses by expansion and compression of the gas (Calculate "f" as shown below).

Adiabatic Operation

In an adiabatic operation where the gas temperature is rapidly changing as a result of rapid compression and expansion of the gas:

 $f = 1 - \left(\frac{1}{a}\right) 1/n$ (See Table 1, Page 36 for Calculations.)

Where:

 $a = \frac{P_3}{P_2}$ = working pressure ratio

- P3 = Maximum system pressure
- P₂ = Minimum system pressure
- n = Polytropic exponent for adiabatic operation

(See Charts on Page 37)

Sizing Accumulators

а

In an isothermal operation where the compression and expansion of the gas is very slow, allowing enough time for heat transfer resulting in little or no change in gas temperature. $f = 1 - (\underline{1})$

Where:

 $a = \frac{P_3}{P_2}$ = working pressure ratio

 $P_3 =$ Maximum system pressure $P_2 =$ Minimum system pressure

Discharge Coefficient

$f = 1 - (\frac{1}{a}) \frac{1}{n}$

Note: Use this formula if "a" is less than 1.1 or over 3. If exact values of "a" are not shown, select the next higher value (See charts below).

Table 1

e Veluee	"n" Values											
a Values	1.40	1.45	1.50	1.55	1.60	1.65	1.70	1.75	1.80	1.85	1.90	1.95
1.0	0	0	0	0	0	0	0	0	0	0	0	0
1.1	.0658	.0636	.0616	.0596	. 0578	.0561	.0545	.0530	.0516	.0502	.0489	.0480
1.2	.1221	.1182	.1145	.1110	.1077	.1046	.1017	.0989	.0963	.0939	.0915	.0896
1.3	.1709	.1655	.1605	.1557	.1512	.1470	.1430	.1392	.1356	.1322	.1290	.1264
1.4	.2136	.2071	.2009	.1951	.1897	.1845	.1796	.1749	.1705	.1663	.1623	.1594
1.5	.2515	.2439	.2369	.2302	.2239	.2179	.2122	.2068	.2017	.1968	.1922	.1887
1.6	.2852	.2769	.2690	.2616	.2545	.2479	.2415	.2355	.2298	.2244	.2191	.2154
1.7	.3155	.3065	.2980	.2899	.2823	.2750	.2681	.2616	.2553	.2494	.2437	.2395
1.8	.3429	.3333	.3242	.3156	.3074	.2997	.2923	.2853	.2786	.2722	.2661	.2617
1.9	.3677	.3577	.3481	.3391	.3305	.3223	.3145	.3070	.2999	.2932	.2867	.2819
2.0	.3905	.3800	.3700	.3606	.3516	.3430	.3348	.3270	.3196	.3125	.3057	.3010
2.1	.4114	.4005	.3902	.3804	.3711	.3622	.3537	.3456	.3378	.3304	.3233	.3181
2.2	.4306	.4194	.4088	.3987	.3891	.3799	.3711	.3627	.3547	.3470	.3396	.3344
2.3	.4484	.4370	.4261	.4157	.4058	.3964	.3873	.3787	.3704	.3625	.3549	.3493
2.4	.4649	.4533	.442	.4315	.4214	.4117	.4025	.3936	.3851	.3770	.3692	.3634
2.5	.4803	.4684	.4571	.4463	.4360	.4261	.4167	.4076	.3989	.3906	.3820	.3766
2.6	.4947	.4826	.4711	.4601	.4496	.4396	.4300	.4207	.4119	.4034	.3952	.3891
2.7	.5081	.4959	.4843	.4731	.4625	.4523	.4425	.4331	.4241	.4154	.4071	.4010
2.8	.5207	.5084	.4966	.4854	.4746	.4642	.4543	.4448	.4356	.4268	.4184	.4120
2.9	.5326	.5226	.5083	.4969	.4860	.4755	.4654	.4558	.4465	.4376	.4290	.4226
3.0	.5438	.5337	.5193	.5078	.4967	,4862	.4760	.4662	.4568	.4478	.4391	.4326

How to Read Table 1

and "a" intersect will be the "f" value.

Locate "a" value in left-hand column and locate "n" value at top of Table 1. The point at which "n"

Table 2

n	C3
1.41 - 1.45	.0300
1.46 - 1.49	.0318
1.50 - 1.53	.0336
1.54 - 1.57	.0352
1.58 - 1.62	.0371
1.63 - 1.67	.0389
1.68 - 1.73	.0410
1.74 - 1.79	.0429
1.80 - 1.85	.0447
1.86 - 1.91	.0464
1.92 - 1.94	.0472

the graph.

Instructions for Selection of Discharge Coefficient "n"

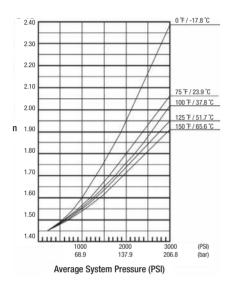
5. To use the graph, locate the average system pressure along the bottom portion of the graph.

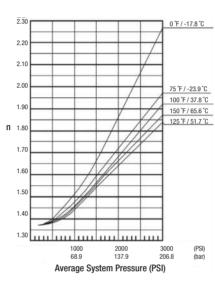
Move vertically along this column until you intersect the line corresponding to the gas tempera-

ture. Then move horizontally along this line and read the discharge coefficient to the left side of

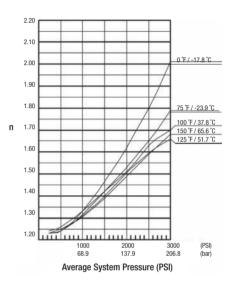
1. Determine Average System Pressure P2 + P3 = Average System Pressure

2

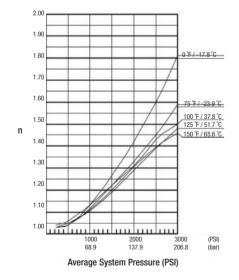

2. Determine the time in seconds to discharge the oil from the accumulator.


3. Select the graph which corresponds to the time (sec.) required to discharge the accumulator.

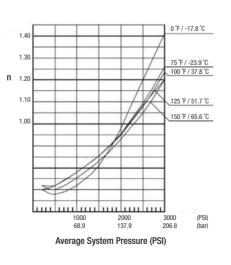
4. Select the curve on the graph which corresponds to the gas operating temperature (If gas temperature under operating conditions is not known assume 100 °F / 38° C.)


Selection Charts for Discharge Coefficient "n"

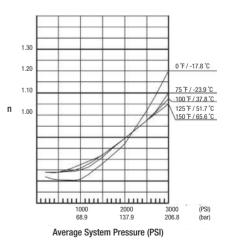
0 - 8 Seconds



31-60 Seconds



61 - 120 Seconds



121 - 500 Seconds

9 - 30 Seconds

501 - 900 Seconds

Sizing Data & Application

Problem #1

Supplementing Pump Flow

Given: A 4.5" bore x 10" stroke cylinder with a 2" diameter rod must extend and retract in 6 seconds. Minimum pressure required to cycle cylinder is 1000 PSI (68 bar). Dwell time between cycles is 1.5 minutes. Gas temperature is 100 °F. Maximum system pressure is 2000 PSI (136 bar).

Information Required

P2	= 1000 PSI (68 bar)	= Minimum system pressure
Рз	= 2000 PSI (136 bar)	= Maximum system pressure
СТ	= 6 sec.	= Cycle time of actuator
VC	= 286.5 in ³	= Displacement of actuator per cycle
DT	= 90 sec.	= Dwell time between cycles
Т	= 100 °F.	= Gas operating temperature

Solve For:

PC Q	= 3.0 in3/ sec. = .78 GPM	= VC = minimum required output of pump (in ³ /sec) DT+CT = .26 PC = pump output (GPM)
Vw	= <u>269 in³</u>	= VC – (3.85) (Q) (CT) = cubic inches of fluid required from accumulator
а	= 2	= P3 = working pressure ratio P2
n	= <u>1.65</u>	= From Page 37
f	= .3430	= From Page 36 (Table 1) (Based on values of "a" & "n")

Solution:

V1 (in³)	$= \frac{(Vw) (E)}{f}$
E	= 1.24 for bladder accumulator (See Page 35).
V1 (in ³)	$\frac{269 (1.24)}{.3430} = 973 \text{ in}^3 \text{ or } 4.25 \text{ Gallons}$

Where $V_1 =$ Accumulator size required in cubic inches

Once V₁ has been determined, select the accumulator from Pages 4-8 which has a gas volume equal to or greater then V₁. In this example a 5 gallon bladder accumulator would satisfy the system. P = gas pre-charge, which should be 80% of P₂ in bladder accumulators.

Problem #2

Increasing Actuation Speed in an Existing Hydraulic System

Given: Present system has a 5 GPM pump capable of 3000 PSI (207 bar), 6" bore x 12" stroke cylinder with a 2" rod. Minimum pressure to extend and retract cylinder is 1500 PSI (103			Solution:			
	bar). Gas temperature i	s 150 °F. Bladder accumulator to be used. Cylinder cycle time is seconds to 8 seconds. Dwell time between cycles is 40 seconds.	V1 (in ³)	$= \frac{(Vw)(E)}{f}$		
Inform	nation Required		E	= 1.24 for bladder accumulator (See Page 35).		
	= <u>1500 PSI (103 bar)</u> = <u>3000 PSI (207 bar)</u>	= Minimum system pressure = Maximum system pressure	V1 (in ³)	$\frac{486.5 (1.24)}{.3196} = 1887.5 \text{ in}^3 \text{ or } 8.2 \text{ Gallons}$		
VC =	= 8 sec. = 640.5 in ³	 = Cycle time of actuator = Displacement of actuator per cycle 	Where $V_1 = Accumulator size respectively.$	equired in cubic inches		
Q =	= 40 sec. = 5 GPM = 150 °F.	= Dwell time between cycles = Present pump flow = Gas operating temperature	equal to or greater then V1. In th	select the accumulator from Pages 4-8 which has a gas volume his example a 10 gallon bladder accumulator would satisfy the hich should be 80% of P ₂ in bladder accumulators.		
Solve	For:					
Vw =	= 486.5 in ³	= VC - (3.85) (Q) (CT)				

VR	= <u>770 in³</u>	= (3.85) (Q) (DT) is the pump output during the dwell period. VR must be Greater than Vw to accomplish the new cycle rate. If not, cycle time (CT) or dwell time (DT) must be increased.
а	= 2	= P ₃ = Pressure ratio P ₂
n	= 1.76	= From Page 37
f	= .3196	= From Page 36 (Table 1) (Based on

values of "a" & "n")

Sizing Data & Application

Problem #3

Shock Suppression

Given: System has a 120 GPM pump operating at 2200 PSI (152 bar). Shock is caused by rapidly solving the directional control valve. 80 feet of pipe is between the pump and valve causing shock. Internal area of pipe is 1.4 square inches. Gas operating temperature v is 100°F (38°C). Using standard petroleum oil (54.3 lbs/ft³). What size of accumulator (V1) would be required to limit shock pressure to 10% above system pressure P2?

Information Required

L A P2 Q T	$= \frac{80 \text{ ft.}}{1.4 \text{ in}^2}$ = $\frac{2200 \text{ PSI (152 bar)}}{120 \text{ GPM}}$ = $\frac{120 \text{ GPM}}{100 \text{ °F}}$	 = Length of pipe between pump and valve causing shock. = Internal area of pipe = Operating pressure = Rate of flow = Gas operating temperature
	e For:	Discharge coefficient - Coe Done 27

20	la stati	0.0	
	ШТІ	on	

V1 (in³)	$= \underbrace{(Vw) (E)}_{f} = Size of accumulato$	r required
V1	$= \frac{(V)^2 (W) (n-1) (.205)}{(P2) (C3)}$	
ν.		50.0 in3 or

V₁ = $(27.5)2 (42.2) (1.80-1) (.205) = 53.2 \text{ in}^3 \text{ or } .23$ Gallons (2200) (.0447)

A1 Qt. accumulator would satisfy the system.

P1 gas pre-charge pressure should normally be 60% of P2, (in a shock suppression application).

n	= 1.80	= Discharge coefficient - See Page 37. Use 0-8 second curves.
VT	= 0.78 ft ³	= (L) (A) = Total volume of oil in pipe 144
WT	= 54.3 lbs/ ft ³	= Weight of fluid per cubic foot
W	= <u>42.2 lbs</u> $=$ (VT) (WT)	= Total weight of liquid in pipe
V	= 27.5 ft/ sec.	= (.3208) (Q) = Flow velocity
C3	= .0447	= From Page 36 (Table 2) (Opposite the "n" value selected)

Guidelines for Selection, Installation and Operation

General

Hydraulic Diaphragm Accumulators from Stauff Corporation have been in use in numerous branches of industry for many years and are proven components. Optimal function and long service life are however only achieved if specific selection criteria are observed and incorrect installations and incorrect operating conditions are avoided.

For improved understanding of the following sections, the most important expressions and terms are briefly explained here.

Operating pressure

Normally the accumulator operates between P1 and P2

P0 = pre-charge pressure (normally 90% of P1)

- P1 = minimum operating pressure
- P2 = maximum operating pressure
- P3 = system relieve pressure setting
- P4 = maximum working pressure of accumulator
- Pm= mean operating pressure

Permissible excess operating pressure P4

Max. pressure for which the accumulator is designed and that can be found in the technical documentation and the marking (rating plate, lettering).

Gas filling pressure

Before the diaphragm accumulator can be installed in a hydraulic system, it must be pre-charged with dry nitrogen gas. The pre-charge pressure is normally 95% to 90% of P1 at operating temperature.

Permissible pressure ratio

 P_2/P_0 or P_3/P_0 = pressure ratio < 8:1, 6:1, 4:1 depending on accumulator size. Figure stipulated by the manufacturer in relation to the compression ratio of the diaphragm accumulator, e.g. 8:1; this figure should not be exceeded (use pressure as absolute figures).

Aspects on the selection of a diaphragm accumulator

Selection in relation to the perm. excess operating pressure P4

The diaphragm accumulator is to be selected such that the permissible excess operating pressure P4, is in all circumstances above the upper operating pressure P2 to be expected and also above any pressure peaks that may occur.

Pressure peaks or pressure increase occur, e.g., due the switching of multiway valves and the resulting retardation of oil masses, retardation of fast moving masses, pressure translation in differential circuits, etc.

In this respect it is highlighted that pressure peaks may be so short that they can often not be measured with the aid of clamped measuring instruments such as pressure gauges. Safety valves also do not always react to such short pressure peaks.

Correct selection of the pre-charge pressure PO

The magnitude of the pre-charge pressure is dependent on the operating pressures to be expected and the type of application.

The following figures can be used as general guidance:

• with pulsation damping Po = 0.6 to 0.8 x Pm (Pm = mean operating pressure)

• with surge damping or volume storage

Po = 0.6 to 0.9 x P1 (p1 = lower working pressure)

It is to be ensured that the pre-charge pressure does not exceed the value 0.9 x P1 also at the operating temperature. The pre-charge pressure established and specified at room temperature increases with increasing temperature in accordance with gas laws.

As a rule of thumb, a pressure increase of 10% for a 30 $^{\circ}\text{C}$ (86F) temperature increase can be expected.

If the pre-charge pressure is too low this may result in a drop in performance from the accumulator and result in high flexing loads on the diaphragm and shortened life of the diaphragm.

Gas Losses

Inadequate gas pressures can also be due to gas losses as a consequence of permeation processes. As elastic separating materials are not leak-proof in the absolute sense, gas molecules pass through the membrane, are dissolved in the operating fluid and transported to the reservoir where there can again separate from the fluid. The gas losses increase proportionally with the operating pressure and exponentially with the temperature. With conditions that are otherwise the same, gas losses will result in a faster reduction of the pre-charge on smaller hydraulic accumulators than on larger accumulators.

Estimates on possible gas losses can be determined on initial installations by monitoring the precharge on regular intervals. From this information it is possible to estimate maintenance intervals.

A pre-charge pressure that is too low from the start will be further reduced by gas pressure losses, and, under operating conditions that otherwise remain the same, a diaphragm accumulator will not be able to store the same volume of fluid. Diaphragms or bladders as separating components are overloaded resulting in a reduction in the service life. The damping capacity of the hydraulic accumulator will be reduced, and any pressure peaks that occur can exceed the permissible excess operating pressure. For this reason, the magnitudes of the pre-charge pressure losses are to be checked and increased at intervals to suit the application. The check can be performed very easily by using the pre-charge kt STDA-CK-M-1.

Correct Installation

Safety -related equipment

It is important that the maximum working pressure of the accumulator is not exceeded and that a safety pressure relieve device is installed in the system.

Fastening/Mounting

Accumulators must be securely fastened in order to prevent any vibration or stress on the accumulator fluid port. Special brackets and clamps are available.

Operating states to be avoided

Excessively high pressure ratio

An excessively high pressure ratio between the maximum operating pressure P2 and the precharge pressure P0 is to be avoided for various reasons. The max. permissible compression ratio and maximum pressure differential ΔP stated by the manufacturer takes into account a reasonable service life of diaphragms or bladders. If the ratio is exceeded, a significant reduction in the service life cannot be excluded. A further reason is that accumulator has a progressive characteristic curve, i.e. with increasing pressure the increase in the fluid volume stored per pressure unit becomes less and less. Expressed in a different way, the accumulator becomes "harder and harder". In an application with volume storage, an increasing amount of (lost) energy must be expended to store less and less additional fluid.

Insufficient spacing of the pre-charge pressure P0 from the lower Operating pressure P1

If the pre-charge pressure (P0) is greater than the lower operating pressure (P1), the diaphragm accumulator empties itself completely during each operating cycle. Particularly on diaphragm accumulators, the sealing elements on the diaphragm sit on or hit the inside of the housing in the area of the fluid connection. Continuous contact can cause flash to form or cause other material deformations that can in turn destroy the diaphragm.

It is important to note that the pre-charge pressure can increase dramatically through an increase of temperature.

Briefly passing the pre-charge pressure during starting and shut down cannot be avoided for functional reasons, it is strongly recommended to consult the manufacturer, as special designs are available for difficult applications.

Sudden complete draining of a hydraulic accumulator

Applications in which a diaphragm accumulator can empty suddenly and without control are to be avoided. One of the possible disadvantages has already been described earlier. If the pre-charge pressure P0 is too close to the minimum operating pressure P1 then this can result in damage to the bottom of the diaphragm.

The result of a very high discharge rate from the accumulator may reduce the output stored volume due to a premature closure of the fluid port by the diaphragm.

www.stauff.com

Raised temperatures

The usual operating conditions for diaphragm accumulators is between -10° C and $+80^{\circ}$ C. Higher temperatures are possible with separating components (bladders, diaphragms) made of special materials. However, here the progressively increasing gas losses with raised temperatures must be taken into account. In addition, a reduction in the permissible maximum working pressure is to be expected, as the strength figures for the housing material must be reduced.

Low temperatures

At temperatures below -10°C, the elasticity of the standard materials (NBR) for diaphragms and bladders reduces and there is a risk of fractures. If usage at such low temperatures cannot be avoided, special diaphragm materials must be used e.g. ECO. Please consult the manufacturer. It is also to be noted that not all housing materials are suitable or approved for low temperatures, as a drop in the notch impact strength can occur. In usage a differentiation is to be made between temperatures due to weather conditions and low temperatures of the medium stored.

Incompatible fluids

Hydraulic accumulators are designed as standard for use with mineral oil. If other fluids like water or even aggressive chemicals are to be used, special material combinations may be required. Please consult Stauff for questionable compatibility. Using a fluid that is not compatible with the housing or the diaphragm will result in damage.

Maintenance

Along with the external inspection for corrosion damage and correct mounting, the maintenance of a hydraulic accumulator is limited to the regular checking and correction, if necessary, of the pre-charge pressure. While for volume storage, variations in the gas filling pressure is mostly to be noticed in the form of inadequate function, for pulsation damping or surge damping, incorrect precharge pressure can remain undetected for long periods and cause damage to the accumulators or the system. Rule of thumb: Initially, check pre-charge pressure on monthly bases, then increase intervals, if no pressure loss is detected, to maintain proper pre-charge pressure.

To check, suitable charge devices should be used that are offered by the manufacturer for the various types of gas connections (M28x1,5 or Schrader ® valve). Suitable charge kits are also used to pre-charge the accumulator with dry Nitrogen.

If only the magnitude of the pre-charge pressure is to be determined, this task can also be performed on the fluid side, if it is possible to slowly fill or drain the hydro accumulator.

During slow filling, the filling process will be seen to slow down considerably when the gas filling pressure is reached. During discharge, the slow drop in pressure, a sudden pressure drop to zero occurs, which can be clearly seen on a pressure gauge. This process can be performed if necessary within a system without removing the accumulator.

Pre-charge the accumulator with zero pressure on the fluid port.

Installation

- The accumulator in a hydraulic circuit should be placed as near as practical to the source of shock or potential energy requirement.
- An installation space of 200mm (approximately 8 inches) should be maintained above the gas
 valve of the accumulator for any testing and charging devices that maybe required
- Normally an accumulator should be installed in a vertical position with the oil port connection facing downward (this is what Stauff recommends), however, a diaphragm accumulator may be mounted in any position without causing any harm to the accumulator, (horizontally or vertically)
- All accumulators must be installed securely by using clamps and support brackets that are designed specifically for mounting the accumulator
- When installing an accumulator using "U" bolt type clamps, care should be exercised so as not to distort the accumulator with excessive force

Pre-Charging Procedure

General Information

- The condition of the accumulator is primarily determined by periodic checking of the pre-charge pressure.
- Hydraulic Accumulators are pressure vessels and only qualified personnel should perform maintenance.
- Drain all fluid completely from accumulator before performing any maintenance.
- . DO NOT weld or braze directly on the accumulator shell.
- D0 NOT use automotive type valve cores as high pressure accumulator gas valves.
- The most accurate pre-charge readings can only be taken when fluid pressure is at "0 PSI".
- Always observe the maximum working pressure and operating temperature ranges.

Do not use oxygen for pre-charging the Accumulator!

Pre-Charging Diaphragm Accumulators with US Style Cored Gas Valve

Figure 2.

1. Isolate the accumulator from the system and make sure hydraulic fluid pressure is zero.

2. Remove the gas valve protection guard and then the gas valve cap from the accumulator.

3. To charge the accumulator, use a charging hose and gauge assembly similar to Stauff Charging Kit # STBA-CK-B-P3 rated for 3,000 psig minimum (higher pressure kits are available).

4. Before using the charging assembly (Figure 1.) make sure that valve **A** is completely open (counter-clockwise), ensure that bleed valve **B** (Figure 1.) is completely closed (clockwise) and that the non-return valve **C** (Figure 1.) is capped.

5. Connect the charging unit to the gas fill valve on the accumulator by means of knurled cap D (Figure 1.).

6. Make sure the valve on the nitrogen bottle is completely closed, then fit the nitrogen gas valve adapter/hose assembly (included in Stauff charging kit # STBA-CK-B-P3) onto the nitrogen bottle (Figure 2.)

- 7. Connect the other end of gas hose to the non-return valve **C** (Figure 1.), after taking off the cap.
- 8. Turn valve A (Figure 1.) clockwise until it stops (Do not over Torque).

9. **SLOWLY** open the valve on nitrogen bottle (Figure 2.) and allow the nitrogen gas to flow into the accumulator. The pressure gauge should begin to register pressure.

10. Once the desired gas pre-charge pressure has been reached, close valve on nitrogen bottle (Figure 2.).

11. Open valve **A** (Figure 1.) (Fully counter-clockwise) to bleed the trapped pressure in the gas line to zero by means of bleed valve **B** (Figure 1.), open valve **B** (turn counter-clockwise) until gauge reads 0 psig.

- 12. Remove hose from non-return valve C (Figure 1.) and replace cap.
- 13. Close the bleed valve B (Figure 1.) and wait a few minutes for pressure to stabilize.

14. Screw valve **A** (Figure 1.) clockwise until pressure can be read on gauge. This should be slightly higher than the required pressure.

15. Adjust to desired pressure by means of bleed valve \mathbf{B} (Figure 1.), then remove charging unit from the accumulator gas valve and from the nitrogen bottle (after making sure that the nitrogen bottle valve is completely closed.

16. Reinstall the gas valve cap and protective guard cap on the accumulator. The accumulator is now ready for use.

NOTE: Allow the accumulator to rest for approximately 10-15 minutes after gas pre-charging. This will allow gas temperature to adjust and equalize. Recheck gas pressure and adjust if necessary. Check accumulator gas valve for any leaks with soapy water. Always wear safety glasses.

Pre-Charging Diaphragm Accumulators with Metric M28 x 1.5 Gas Valve

1. Isolate the accumulator from the system and make sure hydraulic fluid pressure is zero.

2. Remove gas valve protection cap and guard from the accumulator.

3. To charge the accumulator, use a charging and gauge kit similar to Stauff' Charging Kit # STDA-CK-M-P3 rated for 3,700 psig minimum.

DANGER: DO NOT attempt to remove the accumulator gas valve screw with a hexagon wrench, as it could be ejected under very high pressure.

4. Before using the charging assembly (Figure 1.) make sure that hex valve **B** is completely closed (clockwise) and visually check that the engaging hex on the bottom of the assembly is fully extended. Ensure that bleed valve **A** (Figure 1.) is completely closed (clockwise) and that the non-return valve **C** (Figure 1.) is capped.

5. Connect the charging unit to the gas fill valve on the accumulator by means of knurled cap **D** (Figure 1.), connect by turning clockwise.

6. Make sure that the valve on the nitrogen bottle is completely closed, then fit the nitrogen gas valve adapter/hose assembly (included in Stauff Charging Kit # STDA-CK-M-P3) onto the nitrogen bottle (Figure 2.).

7. Connect the other end of gas hose to the non-return valve C (Figure 1.), after taking off its cap.

8. Turn valve **B** (Figure 1.) counter-clockwise a minimum of three complete turns, thereby opening the hex gas valve (**Do not over Torque**).

9. **SLOWLY** open valve on nitrogen bottle (Figure 2.) and allow the nitrogen gas to flow into the accumulator. The pressure gauge on the charging assembly will begin to register a pressure increase in the accumulator.

10. Once the desired gas pre-charge pressure has been reached, close the valve on nitrogen bottle (Figure 2.). The reading on the gauge should be slightly higher than the required pressure.

11. Adjust to desired pre-charge pressure by means of bleed valve **A** (Figure 1.) turn counter-clockwise and slowly bleed nitrogen until pre-charge pressure setting is reached, then close bleed valve **A** (Figure 1.) by turning clockwise until completely closed.

12. Close valve **B** (Figure 1.) clockwise until fully closed (to a maximum 14.75 foot pounds of torque) making sure the socket-headed gas valve is tight, bleed the trapped pressure in the gas line to zero by means of bleed valve **A** (Figure 1.), open valve **A** (Figure 1.), counter-clockwise until the gauge reads 0 psig, close bleed valve **A** (Figure 1.) by turning clockwise until completely closed.

13. Disconnect the end of gas hose from the non-return valve C (Figure 1.) and replace its cap, remove the gas valve adapter / hose assembly from the nitrogen bottle (Figure 2.).

14. Remove the charging unit from the gas fill valve on the accumulator by means of knurled cap **D** (Figure 1.) turn counter-clock-wise until removed.

15. Using the 6mm hexagon wrench supplied in Stauff' Charging Kit # STDA-CK-M-P3, ensure that the metric M28x1.5 socketheaded gas valve is firmly tightened to a maximum of 14.75 foot pounds of torque.

16. Reinstall the gas valve cap and protective guard cap on the accumulator. The accumulator is now ready for use.

17. **Note:** When charging Stauff Diaphragm accumulators with a North American style gas valve please refer to pre-charging instructions for Stauff Diaphragm Accumulators with North American Style Gas Valves.

NOTE: Allow the accumulator to rest for approximately 10-15 minutes after gas pre-charging. This will allow gas temperature to adjust and equalize. Recheck gas pressure and adjust if necessary. Check accumulator gas valve for any leaks with soapy water. Always wear safely glasses.

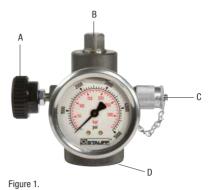


Figure 2.

Checking Pre-Charge Pressure

General Information

The condition of the accumulator is primarily determined by periodic checking of pre-charge pressure. Only qualified personnel should perform any maintenance on accumulators. Nitrogen gas precharge pressure should be checked at least once during the first week of operation to assure that no leak has developed. The pre-charge pressure and ambient temperature should be recorded at installation. If there is no loss of gas pre-charge pressure, it should be rechecked in approximately 4 months. Thereafter, it should be checked annually. Check pre-charge if the system is acting sluggishly. If pre-charge is low, check the gas valve for leakage and recharge.

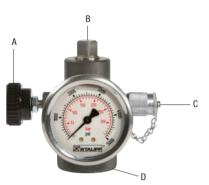


Figure 1.

Pre-Charge Checking Procedure for Diaphragm Accumulators with Metric M28 x 1.5 Gas Valve

1. Use appropriate valving in the hydraulic system, to discharge all hydraulic fluid from accumulator.

2. To check or adjust pre-charge pressure, **HYDRAULIC PRESSURE MUST BE REDUCED TO 0 PSIG**. Pre-charge pressure should be checked periodically. Charging and checking should be done with an accumulator gauge assembly kit similar to Stauff Part # STDA-CK-M-P3.

DANGER: DO NOT attempt to remove the accumulator gas valve screw with a hexagon wrench, as it could be ejected under very high pressure.

3. Follow pre-charging instructions for Diaphragm Accumulators with M28x1.5 Style Gas Valves instructions #4 through #15.

4. Reinstall the gas valve cap and protective guard cap on the accumulator. The accumulator is now ready for use.

NOTE: Allow accumulator to rest approximately 10-15 minutes after gas pre-charging. This will allow gas temperature to adjust and equalize. Recheck gas pressure and adjust if necessary. Check accumulator gas valve for any leaks with soapy water. Always wear safely glasses.

Checking Pre-Charge Pressure

General Information

The condition of the accumulator is primarily determined by periodic checking of pre-charge pressure. Only qualified personnel should perform any maintenance on accumulators. Nitrogen gas pre-charge pressure should be checked at least once during the first week of operation to assure that no leak has developed. The pre-charge pressure and ambient temperature should be recorded at installation. If there is no loss of gas pre-charge pressure, it should be rechecked in approximately 4 months. Thereafter, it should be checked annually. Check pre-charge if the system is acting sluggishly. If pre-charge is low, check the gas valve for leakage and recharge.

Pre-Charge Checking Procedure for Diaphragm Accumulators with US Style Gas Valve

1. Use appropriate valuing in the hydraulic system, to discharge all hydraulic fluid from accumulator.

2. To check or adjust pre-charge pressure, **HYDRAULIC PRESSURE MUST BE REDUCED 0 PSIG.** Pre-charge pressure should be checked periodically. Charging and checking should be done with an accumulator gauge assembly kit similar to Stauff Part # STBA-CK-B-P3.

3. Follow pre-charging instructions for Diaphragm Accumulators with US Style Gas Valve - instructions #4 through #15.

4. Reinstall the gas valve cap and protective guard cap on the accumulator. The accumulator is now ready for use.

NOTE: Allow accumulator to rest approximately 10-15 minutes after gas pre-charging. This will allow gas temperature to adjust and equalize. Recheck gas pressure and adjust if necessary. Check accumulator gas valve for any leaks with soapy water. Always wear safely glasses.

Local Solutions For Individual Customers Worldwide

AUSTRALIA

P. O. Box 227 Wollongong, NSW, 2526 24-26 Doyle Avenue Unanderra, Wollongong, NSW, 2526 Tel.: +61 2 4271 18 77 Fax: +61 2 4271 84 32 sales@stauff.com.au

BRAZIL

 BRAZIL

 STAUFF Brasil Ltda.

 Avenida Gupê 10767

 Galpão 2 - Bloco A

 Barueri - São Paulo

 CEP 06422-120

 Tel.: +55 11 47 72 72 00

 Fax: +55 11 47 72 72 10

 stauff@stauffbrasil.com

CANADA

STAUFF Canada Ltd. 866 Milner Avenue Scarborough Ontario M1B 5N7 Tel.: +1 416 282 46 08 Fax: +1 416 282 30 39 sales@stauffcanada.com

CHINA

CHINA STAUFF Hydraulic Components & Services Co., Ltd. No. 41-42, Lane 369, Chuang Ye Road Jushuo Industrial Zone, Kang Qiao Shanghai, 201319 Tel.: +86 21 68 18 70 00 Fax: +86 21 68 18 71 36 info@stauff.com.cn

FRANCE

STAUFF S.A.S. 230, Avenue du Grain d'Or Z.I. de Vineuil - Blois Sud 41354 Vineuil-cedex Tel.: +33 2 54 50 55 50 Fax: +33 2 54 42 29 19 direction@stauffsa.com

GERMANY

GERMANY Walter Stauffenberg GmbH & Co. KG P. O. Box 1745 58777 Werdohi Im Ehrenfeld 4 58791 Werdohi Tel.: +49 23 92 916 0 Fax: +49 23 92 916 160 sales@stauff.com

INDIA

 NDIA

 STAUFF India Pvt. Ltd.

 Gat. No. 2340

 Pune Nagar Road, Wagholi

 Pune, 412207

 Tel.: +91 20 66 20 2473

 Fax: +91 20 27 05 1567

 sales@stauffindia.com

IRELAND

IRELAND STAUFF Ireland Ltd. Block B, 9 Ferguson Drive Knockmore Hill Industrial Estate Lisburn, County Antrim BT28 2EX Tel.: + 44 2829 60 69 00 Fax: + 44 2829 60 26 88 sales@stauffireland.com

ITALY

TALY STAUFF Italia s.r.l. Viale Nuova Valassina 78 angolo Via Baragiola sn 20832 Desio (MB) Tel.: +39 0362 63 80 70 Fax: +39 0362 63 80 69 sales@stauff.it

KOREA

STAUFF Korea Ltd. 1500-12, Dadae-Dong Saha-Ku Pusan, 604-826 Tel.: +82 51 266 66 66 Fax: +82 51 266 88 66 info@stauff.co.kr

MALAYSIA

STAUFF South East Asia Sdn Bhd 2nd Floor, Lot 834, Jalan Subang 7 Kaw Perindustrian Subang Kaw Perindustrian Subang Off Persiaran Subang, Selangor 47500 Subang Jaya Phone: +60 3 8024 6168 Fax: +60 3 8024 8168 sales@stauff.com.my

NEW ZEALAND

NEW ZEALAND STAUFF Corporation (NZ) Ltd. P. 0. Box 58517 Greenmount, Auckland Unit D, 103 Harris Road East Tamaki, Auckland Tel.: + 64 9 271 48 12 Fax: + 64 9 271 48 32 info@stauff.co.nz

POLAND

 POLAND

 STAUFF Polska Sp. z o.o.

 Miszewko 43 A

 80-297 Banino

 Tel.: +48 58 660 11 60

 Fax: +48 58 629 79 52

 sales@stauff.pl

RUSSIAN FEDERATION

Building 1 19, Leninskaya Sloboda Moscow, 115280 Tel.: +7 495 276 16 50 +7 495 223 89 61 Fax: +7 495 276 16 51 sales@stauff.ru

UNITED KINGDOM

STAUFF UK Ltd. 500, Carlisle Street East Off Downgate Drive Sheffield, S4 8BS Tel.: +44 114 251 85 18 Fax: +44 114 251 85 19 sales@stauff.co.uk

UNITED STATES

STAUFF Corporation 7 Wm. Demarest Place
 Yum: Demarest Place

 Waldwick, 07463-1542

 New Jersey

 Tel.: +1 201 444 78 00

 Fax: +1 201 444 78 52

 sales@stauffusa.com

VIETNAM

STAUFF Vietnam Ltd. 2nd Floor, Room 201 Elilink Group Building 37A Phan Xich Long Street W. 3, Phu Nhuan District Ho Chi Minb City Ho Chi Minh City Phone: +84 8 3995 4723 Fax: +84 8 3995 4723 sales@stauff.com.vn

Global available through wholly-owned branches and distributors in all industrial

